Cortisone (hormone)

From WikiProjectMed
Jump to navigation Jump to search
Cortisone (hormone)
Pronunciation /ˈkɔːrtɪsn/, /ˈkɔːrtɪzn/
IUPAC name
Preferred IUPAC name
Other names
17α,21-Dihydroxy-11-ketoprogesterone; 17α-Hydroxy-11-dehydrocorticosterone
3D model (JSmol)
MeSH Cortisone
  • InChI=1S/C21H28O5/c1-19-7-5-13(23)9-12(19)3-4-14-15-6-8-21(26,17(25)11-22)20(15,2)10-16(24)18(14)19/h9,14-15,18,22,26H,3-8,10-11H2,1-2H3/t14-,15-,18+,19-,20-,21-/m0/s1 checkY
  • InChI=1/C21H28O5/c1-19-7-5-13(23)9-12(19)3-4-14-15-6-8-21(26,17(25)11-22)20(15,2)10-16(24)18(14)19/h9,14-15,18,22,26H,3-8,10-11H2,1-2H3/t14-,15-,18+,19-,20-,21-/m0/s1
  • O=C(CO)[C@@]3(O)CC[C@H]2[C@@H]4CC\C1=C\C(=O)CC[C@]1(C)[C@H]4C(=O)C[C@@]23C
Molar mass 360.450 g·mol−1
Melting point 220 to 224 °C (428 to 435 °F; 493 to 497 K)
H02AB10 (WHO) S01BA03 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

Cortisone is a pregnane (21-carbon) steroid hormone. It is a naturally-occurring corticosteroid metabolite that is also used as a pharmaceutical prodrug; it is not synthesized in the adrenal glands. Cortisol is converted by the action of the enzyme corticosteroid 11-beta-dehydrogenase isozyme 2 into the inactive metabolite cortisone, particularly in the kidneys. Cortisone is converted back to the active steroid cortisol by the action of the enzyme 11β-Hydroxysteroid dehydrogenase type 1, particularly in the liver.

The term "cortisone" is frequently misused to mean either any corticosteroid, or hydrocortisone, which is actually another name for cortisol. Many who speak of receiving a "cortisone shot" or taking "cortisone" are actually receiving hydrocortisone or one of many other, much more potent synthetic corticosteroids; it is unlikely that the drug administered is actually cortisone.

Cortisone suppresses various elements of the immune system, thus reducing inflammation and attendant pain and swelling.[1][2] However, using cortisone only results in very mild activity, and very often more potent steroids are used instead.

Physiological effects

Cortisone itself is inactive.[3] It must be converted to cortisol by the action of 11β-Hydroxysteroid dehydrogenase type 1.[4]


Cortisone was first identified by the American chemists Edward Calvin Kendall and Harold L. Mason while researching at the Mayo Clinic.[5][6][7] During the discovery process, cortisone was known as compound E (while cortisol was known as compound F).

In 1949, Philip S. Hench and colleagues discovered that large doses of injected cortisone were effective in the treatment of patients with severe rheumatoid arthritis.[8] Kendall was awarded the 1950 Nobel Prize for Physiology or Medicine along with Philip Showalter Hench and Tadeusz Reichstein for the discovery of the structure and function of adrenal cortex hormones including cortisone.[9][10] Both Reichstein and the team of O. Wintersteiner and J. Pfiffner had separately isolated the compound prior to the discovery made by Mason and Kendall, but failed to recognize its biological significance.[6] Mason's contributions to the crystallization and characterization of the compound have generally been forgotten outside of the Mayo Clinic.[6]

Cortisone was first produced commercially by Merck & Co. in 1948 or 1949.[8][11] On September 30, 1949, Percy Julian announced an improvement in the process of producing cortisone from bile acids.[12] This eliminated the need to use osmium tetroxide, a rare, expensive, and dangerous chemical. In the UK in the early 1950s, John Cornforth and Kenneth Callow at the National Institute for Medical Research collaborated with Glaxo to produce cortisone from hecogenin from sisal plants.[13]


Cortisone is one of several end-products of a process called steroidogenesis. This process starts with the synthesis of cholesterol, which then proceeds through a series of modifications in the adrenal gland to become any one of many steroid hormones. One end-product of this pathway is cortisol. For cortisol to be released from the adrenal gland, a cascade of signaling occurs. Corticotropin-releasing hormone released from the hypothalamus stimulates corticotrophs in the anterior pituitary to release ACTH, which relays the signal to the adrenal cortex. Here, the zona fasciculata and zona reticularis, in response to ACTH, secrete glucocorticoids, in particular cortisol. In various peripheral tissues, notably the kidneys, cortisol is inactivated to cortisone by the enzyme corticosteroid 11-beta-dehydrogenase isozyme 2. This is crucial because cortisol is a potent mineralocorticoid and would cause havoc with electrolyte levels (raising blood sodium and lowering blood potassium levels) and raise blood pressure if it were not inactivated in the kidneys.[4]

Because cortisone must be converted to cortisol before being active as a glucocorticoid, its activity is less than simply administering cortisol directly (80–90%).[14]

See also


  1. "Cortisone shots". 2010-11-16. Archived from the original on 2013-09-01. Retrieved July 31, 2013.
  2. "Prednisone and other corticosteroids: Balance the risks and benefits". 2010-06-05. Archived from the original on 2013-12-13. Retrieved 2017-12-21.
  3. Martindale, William; Reynolds, James, eds. (1993). Martindale, The Extra Pharmacopoeia (30th ed.). Pharmaceutical Press. p. 726. ISBN 978-0853693000.
  4. 4.0 4.1 Cooper MS, Stewart PM (2009). "11Beta-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation". J Clin Endocrinol Metab. 94 (12): 4645–4654. doi:10.1210/jc.2009-1412. PMID 19837912.
  5. "Cortisone Discovery and the Nobel Prize". Archived from the original on 2009-04-16. Retrieved 2009-07-04.
  6. 6.0 6.1 6.2 "I Went to See the Elephant" autobiography of Dwight J. Ingle, published by Vantage Press (1963), pg 94, 109
  7. Mason, Harold L.; Myers, Charles S.; Kendall, Edward C. (1936). "The chemistry of crystalline substances isolated from the suprarenal gland" (PDF). J. Biol. Chem. 114 (3): 613. doi:10.1016/S0021-9258(18)74790-X. Archived (PDF) from the original on 2018-07-13. Retrieved 2014-09-07.
  8. 8.0 8.1 Thomas L. Lemke; David A. Williams (2008). Foye's Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. pp. 889–. ISBN 978-0-7817-6879-5.
  9. "The Nobel Prize in Physiology or Medicine 1950". The Nobel Prize. The Nobel Foundation. 2021. Archived from the original on 23 May 2020. Retrieved 2 April 2021.
  10. Glyn, J (1998). "The discovery and early use of cortisone". J R Soc Med. 91 (10): 513–517. doi:10.1177/014107689809101004. PMC 1296908. PMID 10070369.
  11. Calvert DN (1962). "Anti-inflammatory steroids". Wis. Med. J. 61: 403–4. PMID 13875857.
  12. Gibbons, Ray (1949). "Science gets synthetic key to rare drug; discovery is made in Chicago". Chicago Tribune. Chicago. p. 1.
  13. Quirke, Viviane (2005). "Making British Cortisone: Glaxo and the development of Corticosteroids in Britain in the 1950s–1960s". Studies in History and Philosophy of Science Part C. 36 (4): 645–674. doi:10.1016/j.shpsc.2005.09.001. PMID 16337555.
  14. "Corticosteroid Dose Equivalents". Medscape. Archived from the original on 11 December 2016. Retrieved 20 December 2016.