Europium(III) nitride

From WikiProjectMed
Jump to navigation Jump to search
Europium(III) nitride
Names
Other names
Europium mononitride, azanylidyneuropium, nitridoeuropium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.496 Edit this at Wikidata
EC Number
  • 234-659-2
  • InChI=1S/Eu.N
    Key: PSBUJOCDKOWAGJ-UHFFFAOYSA-N
  • N#[Eu]
Properties
EuN
Molar mass 165.971 g·mol−1
Appearance black crystals
Density 6.57 g/cm3
reacts with water
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Europium(III) nitride is a binary inorganic compound of europium and nitrogen with the chemical formula EuN.[1]

Synthesis

Europium(III) nitride can be produced via the reaction of elemental europium in an ammonia stream in corundum boats in silica glass tubes. The reaction takes place at 700 °C.[2]

2Eu + 2NH3 → 2EuN + 3H2

In this reaction, europium is oxidized and the hydrogen in ammonia is reduced.

Physical properties

Europium(III) nitride shows Van Vleck paramagnetism[3] and crystallizes in the rock salt structure with a = 501.779(6) pm.[4][5][6] Thin films of rare earth nitrides, including europium(III) nitride, tend to form oxides in the presence of oxygen.[7] The enthalpy of formation of EuN is: ΔH0 = 217.6±25.1 kJ/mol.[8] The band gap for europium(III) nitride was calculated to be 2.08 eV.[9]

Europium(III) nitride forms black crystals and reacts with water.

Uses

EuN is a semiconductor.[10]

References

  1. ^ "Europium Nitride". American Elements. Retrieved 31 January 2024.
  2. ^ Klemm, W.; Winkelmann, G. (November 1956). "Zur Kenntnis der Nitride der Seltenen Erdmetalle". Zeitschrift für anorganische und allgemeine Chemie. 288 (1–2): 87–90. doi:10.1002/zaac.19562880112. Retrieved 31 January 2024.
  3. ^ Busch, G.; Junod, P.; Levy, F.; Menth, A.; Vogt, O. (February 1965). "Influence of crystal fields on the magnetic properties of the rare-earth nitrides". Physics Letters. 14 (4): 264–266. Bibcode:1965PhL....14..264B. doi:10.1016/0031-9163(65)90190-3. Retrieved 31 January 2024.
  4. ^ Larson, P.; Lambrecht, Walter R. L.; Chantis, Athanasios; van Schilfgaarde, Mark (16 January 2007). "Electronic structure of rare-earth nitrides using the LSDA + U approach: Importance of allowing 4 f orbitals to break the cubic crystal symmetry". Physical Review B. 75 (4): 045114. Bibcode:2007PhRvB..75d5114L. doi:10.1103/PhysRevB.75.045114. Retrieved 31 January 2024.
  5. ^ Standard X-ray Diffraction Powder Patterns. U.S. Department of Commerce, National Bureau of Standards. 1953. p. 56. Retrieved 31 January 2024.
  6. ^ Suehiro, T.; Hirosaki, N.; Wada, T.; Yajima, Y.; Mitomo, M. (Mar 2005). "Europium nitride synthesized by direct nitridation with ammonia". Powder Diffraction. 20 (1): 40–42. Bibcode:2005PDiff..20...40S. doi:10.1154/1.1835963. ISSN 1945-7413. S2CID 98808817.
  7. ^ Ruck, B. J.; Natali, F.; Plank, N. O. V.; Do Le, Binh; Azeem, M.; Alfheid, Maha; Meyer, C.; Trodahl, H. J. (2012-08-01). "The influence of nitrogen vacancies on the magnetic behaviour of rare-earth nitrides". Physica B: Condensed Matter. 26th International Conference on Defects in Semiconductors. 407 (15): 2954–2956. Bibcode:2012PhyB..407.2954R. doi:10.1016/j.physb.2011.08.004. ISSN 0921-4526.
  8. ^ Kordis, J.; Gingerich, K. A.; Kaldis, E. (1973-11-01). "Heat of Vaporization of EuN and Its Standard Heat of Formation". Journal of the American Ceramic Society. 56 (11): 581–583. doi:10.1111/j.1151-2916.1973.tb12420.x.
  9. ^ Sclar, N. (1962-10-01). "Energy Gaps of the III–V and the (Rare Earth)-V Semiconductors". Journal of Applied Physics. 33 (10): 2999–3002. Bibcode:1962JAP....33.2999S. doi:10.1063/1.1728552. ISSN 0021-8979.
  10. ^ "Europium nitride: a novel diluted magnetic semiconductor". ESRF. Retrieved 31 January 2024.