Carbonate oxalate

From WikiProjectMed
Jump to navigation Jump to search

The carbonate oxalates are mixed anion compounds that contain both carbonate (CO3) and oxalate (C2O4) anions. Most compounds incorporate large trivalent metal ions, such as the rare earth elements. Some carbonate oxalate compounds of variable composition are formed by heating oxalates.[1]

Formation

One method to form carbonate oxalates is to heat a metal salt with ascorbic acid, which decomposes to oxalate and carbonate and combines with the metal.[2]

Reactions

When heated, oxalate carbonates decompose to carbon monoxide and carbonates, which form oxides at higher temperatures.[2]

List

formula name formula weight crystal form space group unit cell Å volume Å3 density properties references
Sc [3]
K4Ti2O2(C2O4)3·CO3 [4]
[Co*(C2O4)(CO3)]2− anionic complex [5]
[CoIII(CO3)(C2O4)(NH3)2]- anionic complex [6]
CaCu3(TiO)4(C2O4)5(CO3)3·CO2 [7]
Sr[TiO(C2O4)CO3]
[Y(H2O)]2(C2O4)(CO3)2 yttrium oxalate carbonate 421.876 orthorhombic C2221 a = 7.8177, b = 14.943, c = 9.4845, Z = 4 1108.0 2.526 [8]
Ba[ZrO(C2O4)(CO3)] [9]
[Ce(H2O)]2[(C2O4)2(CO3)]·2.5H2O triclinic P1_ a 6.329 b 8.743 c 13.000, α 105.61° β 90.55° γ 105.10° [10]
Pr4(C2O4)4(CO3)2]·3H2O catena(bis(μ4-Oxalato)-(μ3-oxalato)-(μ2-oxalato)-bis(μ6-carbonato)-bis(μ2-aqua)-diaqua-tetra-praseodymium hydrate) triclinic P1_ a 6.298 b 8.673 c 12.970, α 105.42° β 90.55° γ 105.01° [11]
Pr2(C2O4)(CO3)2 [12]
Nd4(C2O4)4(CO3)2]·3H2O catena-[bis(μ4-Oxalato)-(μ3-oxalato)-(μ2-oxalato)-bis(μ6-carbonato)-bis(μ2-aqua)-diaqua-tetra-neodymium hydrate] triclinic P1_ a 6.273(6)Å b 8.616(7)Å c 12.928(9)Å, α 105.50(6)° β 90.52(7)° γ 105.00(6)° [11]
(NH4)2[Nd2(CO3)(C2O4)3(H2O)]·H2O diammonium aqua—carbonato-tri—oxalato-dineodymium(III) hydrate triclinic P1_ a=8.706 b=9.530 c=10.327 α = 73.35° β = 86.90° γ = 80.50° Z=2 809.69 2.808 [13]
Eu4(C2O4)4(CO3)2·3H2O catena(bis(μ4-Oxalato)-(μ3-oxalato)-(μ2-oxalato)-bis(μ6-carbonato)-bis(μ2-aqua)-diaqua-tetra-europium hydrate) triclinic P1_ a 6.179 b 8.464 c 12.856, α 105.13° β 90.46° γ 104.86° [11]
[Eu(H2O)]2(C2O4)(CO3)2 [14]
[Gd(H2O)]2(C2O4)(CO3)2 [14]
[Tb(H2O)]2(C2O4)(CO3)2 [14]
[Dy(H2O)]2(C2O4)(CO3)2 [14]
[Ho(H2O)]2(C2O4)(CO3)2 [14]
Er2(CO3)2(C2O4)(H2O)2 monoclinic Cm a = 7.773, b = 14.920, c = 4.7309, β = 90.12° Z = 2 [15]
Pb[ZrО(C2O4)CO3]
Pb4(CO3)2(C2O4)(OH)2 535.41 monoclinic P21/c a=11.8593 b=5.2486 c=9.0997 β =96.669 Z=4 562.58 6.321 colourless [16]
(NH4)4[Th(CO3)2(C2O4)2]•0.5Н2O [17]
(NH4)4[Th(CO3)2(C2O4)2]•10Н2O [17]
(CN3H6)3(NH4)[Th(CO3)2(C2O4)2]•3Н2O [17]
(CN3H6)3(NH4)[Th(CO3)3(C2O4)]•1.5Н2O [17]
(CN3H6)3(NH4)[Th(CO3)3(C2O4)]•3Н2O [17]
(CN3H6)6[Th2(CO3)5(C2O4)] hexaguandinium pentacarbonatooxalato dithorium [18]
(CN3H6)6[Th2(CO3)5(C2O4)2]•4Н2O [17]
(CN3H6)6[Th2(CO3)5(C2O4)2]•8Н2O [17]
(CN3H6)6[Th2(CO3)4(C2O4)3]•14Н2O [17]
(CN3H6)8[Th2(CO3)7(C2O4)] [17]
(CN3H6)8[Th2(CO3)7(C2O4)]•5Н2O [17]
(CN3H6)8[Th2(CO3)7(C2O4)]•6Н2O [17]
(CN3H6)8[Th2(CO3)5(C2O4)3]•Н2O [17]
(CN3H6)10[Th2(CO3)8(C2O4)]•8Н2O [17]
Na4[Th2(OH)2(CO3)4(C2O4)]•4Н2O [17]
Na4[Th2(OH)6(CO3)2(C2O4)]•2Н2O [17]
Na8Th(C2O4)2(CO3)4 •11Н2O [19]
Na8[Th(CO3)5(C2O4)]•11Н2O [17]
Na10[Th(CO3)5(C2O4)2]•11Н2O [17]
Na10[Th(CO3)5(C2O4)2]•16Н2O [17]
Na10[Th(OH)2(CO3)3(C2O4)3]•8Н2O [17]
Na10[Th(OH)2(CO3)3(C2O4)3] [17]
Na12[Th(CO3)6(C2O4)2]•11Н2O [17]
K2[Th2(OH)2(CO3)3(C2O4)]•2Н2O [17]
K2[Th2(OH)2(CO3)3(C2O4)] [17]
K4[Th(CO3)3(C2O4)]•6Н2O [17]
K5[Th2(OH)(CO3)4(C2O4)2]•2Н2O [17]
K6[Th(CO3)4(C2O4)]•8Н2O [17]
K6[Th(CO3)3(C2O4)2]•4Н2O [17]
K6[Th2(CO3)5(C2O4)2]•2Н2O [17]
K6[Th2(CO3)4(C2O4)3]•6Н2O [17]
K8[Th2(CO3)5(C2O4)3]•13Н2O [17]
K8[Th2(CO3)5(C2O4)3]•16Н2O [17]
K10[Th2(CO3)7(C2O4)2]•8Н2O [17]
K10[Th2(CO3)7(C2O4)2]•12Н2O [17]
K10[Th2(CO3)7(C2O4)2]•14Н2O [17]
K10[Th2(CO3)5(C2O4)4]•5Н2O [17]
K10[Th2(CO3)5(C2O4)4]•7Н2O [17]
(NH4)(CN3H6)3[(UO2)2(CO3)(C2O4)2(C3H4N2O2)] · H2O [20]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C5H8N2O2)] · 1.5H2O guanidonium μ-carbonate μ-ethylmethylgyoximatedioxylatediuranylate sesquihydrate monoclinic P21 a=6.909 b=15.794 c=30.064 β=96.720° Z=4 3258 2.383 red plates [20][21]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C6H8N2O2)] · 3H2O [20]
(NH4)(CN3H6)4[(UO2)2(CO3)(C2O4)2(C6H4N2O2)] · H2O [20]
(CN3H6)4[(UO2)2(C6H8N2O2)(CO3)(C2O4)2] · (C6H10N2O2) · 2H2O guanidinium (3-methyl-1,2-cyclopenadionedioxime)dioxalato (μ-3-methyl-1,2-cyclopenadionedioxato) μ-carbonatodiuranylate dihydrate triclinic P1_ a=9.2474 b=14.8562 c=16.8917 α = 68.504° β = 77.721° γ = 89.792° Z=2 2102.7 2.108 red [22]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C7H10N2O2)] · H2O [20]
NH4(CN3H6)3[(UO2)2(C7H10N2O2)(CO3)(C2O4)2] · 2H2O ammonium guanidinium dioxalato (μ-3-methyl-1,2-cyclopenadionedioxato) μ-carbonatodiuranylate dihydrate orthorhombic P212121 a=9.904 b=17.400 c=18.757 Z=4 3232.2 2.393 red [22]
(CN3H6)4[(UO2)2(CO3)(C2O4)2(C6H10N2O2)] · H2O guanidinium dioxalato μ-diethylglyoximato μ-carbonatodiuranylate monohydrate 1176.59 monoclinic P21/n a=7.6140 b=15.4388 c=28.010 β=95.99° Z=4 3274.6 2.387 orange [23]
(CN3H6)2(C2H2N2)[(UO2)2(CO3)(C2O4)2(C6H10N2O2)] · 3H2O guanidinium ethylenediammonium dioxalato μ-diethylglyoximato μ-carbonatodiuranylate monohydrate orange [23]
[C(NH2)3]10[(UO2)6(μ3-O)2(μ2-OH)2(C2O4)4(CO3)4]· 2H2O 2913.21 triclinic P1_ a=11.5919 b=11.7868 c=13.3545 α = 102.637° β = 93.278° γ = 95.273° Z=1 1759.7 2.749 yellow [24]
Pu Plutonium(III) oxalate carbonate [25]

References

  1. ^ Cindrić, Marina; Strukan, Neven; Vrdoljak, Višnja; Devčić, Maja; Kamenar, Boris (2002-01-01). "Synthesis of Molybdovanadates Coordinated by Oxalato Ligands. The Crystal Structure of K 6 [Mo 6 V 2 O 24 (C 2 O 4 ) 2 ]·6H 2 O". Journal of Coordination Chemistry. 55 (6): 705–710. doi:10.1080/00958970290027570. ISSN 0095-8972. S2CID 93516054.
  2. ^ a b Ma, Lin; Zhou, Xiaoliang; Yan, Zhengguang; Han, Xiaodong (May 2015). "Hydrothermal synthesis of [Y(H2O) ]2(C2O4)(CO3)2 powder using ascorbic acid". Advanced Powder Technology. 26 (3): 853–856. doi:10.1016/j.apt.2015.02.015.
  3. ^ Fedorov, I. A.; Balakaeva, T. A. (1965-05-01). "SCANDIUM OXALATE-CARBONATE COMPOUNDS". Zh. Neorgan. Khim. (in Russian). 10. OSTI 4589394.
  4. ^ Muraleedharan, K.; Labeeb, P.; Mujeeb, V. M. Abdul; Aneesh, M. H.; Devi, T. Ganga; Kannan, M. P. (2011-02-01). "Effect of Particle Size on Non-Isothermal Decomposition of Potassium Titanium Oxalate". Zeitschrift für Physikalische Chemie. 225 (2): 169–181. doi:10.1524/zpch.2011.0051. ISSN 2196-7156. S2CID 101959591.
  5. ^ Matsuura, Tatsuo; Hashimoto, Tetsuo (December 1966). "Szilard-Chalmers Reaction of Anionic Cobalt Complex Ions on Ion-Exchange Resins". Bulletin of the Chemical Society of Japan. 39 (12): 2647–2652. doi:10.1246/bcsj.39.2647. ISSN 0009-2673.
  6. ^ Enomoto, Yoshihiro; Ito, Teiichi; Shibata, Muraji (1974-05-05). "The Preparation Ofcis,Cis-Dicyanocarbonatodiamminecobalte(III) Andcis,Cis-Oxalatodiaquodiamminecobalt(III) Complexes". Chemistry Letters. 3 (5): 423–426. doi:10.1246/cl.1974.423. ISSN 0366-7022.
  7. ^ Etape, Ekane Peter; Foba-Tendo, Josepha; Namondo, Beckley Victorine; Yufanyi, Divine Mbom; Tedjieukeng, Hypolite Mathias Kamta; Fomekonga, Roussin Lontio; Ngolui, Lambi John (2020-10-08). "Nanosize CaCu 3 Ti 4 O 12 Green Synthesis and Characterization of a Precursor Oxalate Obtained from Averrhoa carambola Fruit Juice and Its Thermal Decomposition to the Perovskite". Journal of Nanomaterials. 2020: 1–7. doi:10.1155/2020/8830136. ISSN 1687-4110.
  8. ^ Bataille, Thierry; Louër, Daniel (2000-12-01). "Powder and single-crystal X-ray diffraction study of the structure of [Y(H 2 O)] 2 (C 2 O 4 )(CO 3 ) 2". Acta Crystallographica Section B: Structural Science. 56 (6): 998–1002. Bibcode:2000AcCrB..56..998B. doi:10.1107/S0108768100010004. PMID 11099966.
  9. ^ ВМ Погибко, ВВ Приседский, ИЛ Сидак (2010). "МЕХАНИЗМ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ ОКСАЛАТНОГО ПРЕКУРСОРА BaZrO3" (PDF). Archived (PDF) from the original on 2021-07-28.{{cite web}}: CS1 maint: multiple names: authors list (link)
  10. ^ Runde, Wolfgang (2009). "Directed Synthesis of Crystalline Plutonium(III) and (IV) Oxalates: Accessing Redox-Controlled Separations in Acidic Solutions". Inorganic Chemistry. 48 (13): 5967–5972. doi:10.1021/ic900344u. PMID 19485387. S2CID 13498583.
  11. ^ a b c Romero, S.; Mosset, A.; Trombe, J.C. (December 1996). "Two New Families of Lanthanide Mixed-Ligand Complexes, Oxalate–Carbonate and Oxalate–Formate: Synthesis and Structure of [Ce(H2O)]2(C2O4)2(CO3)·2.5 H2O and Ce(C2O4)(HCO2)". Journal of Solid State Chemistry. 127 (2): 256–266. Bibcode:1996JSSCh.127..256R. doi:10.1006/jssc.1996.0382.
  12. ^ Glasner, A.; Steinberg, M. (December 1961). "Thermal decomposition of the light rare earth oxalates". Journal of Inorganic and Nuclear Chemistry. 22 (1–2): 39–48. doi:10.1016/0022-1902(61)80227-3.
  13. ^ Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée (2002-10-15). "A neodymium(III)–ammonium complex involving oxalate and carbonate ligands: (NH 4 ) 2 [Nd 2 (C 2 O 4 ) 3 (CO 3 )(H 2 O)]·H 2 O". Acta Crystallographica Section C: Crystal Structure Communications. 58 (10): m517–m520. Bibcode:2002AcCrC..58M.517T. doi:10.1107/S0108270102014737. ISSN 0108-2701. PMID 12359932.
  14. ^ a b c d e Romero, S (1997). "A new family of lanthanide oxalate carbonate, [Ln(H2O)]2(C2O4)(CO3)2 with Ln = Eu...Ho, presenting a relatively open framework". European Journal of Solid State and Inorganic Chemistry. 34: 209–219.
  15. ^ Müller-Buschbaum, Klaus (2002). "Er2(CO3)2(C2O4)(H2O)2 — Synthese, Kristallstruktur und thermischer Abbau eines Carbonat-Oxalat-Hydrates des Erbiums". Zeitschrift für anorganische und allgemeine Chemie (in German). 628 (8): 1761–1764. doi:10.1002/1521-3749(200208)628:8<1761::AID-ZAAC1761>3.0.CO;2-1. ISSN 1521-3749.
  16. ^ Yang, Hui; Mao, Feifei; Xu, Cuixia (2018-05-24). "Syntheses, Crystal Structures and Properties of Two Novel Mixed Anion Hybrids with Formulas of Pb 6 O 2 (BO 3 ) 2 (C 2 O 4 ) and Pb 4 (CO 3 ) 2 (C 2 O 4 )(OH) 2". ChemistrySelect. 3 (19): 5431–5438. doi:10.1002/slct.201801072. ISSN 2365-6549.
  17. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Bagnall, Kenneth W. (2013-12-12). Th Thorium: Compounds with Carbon: Carbonates, Thiocyanates, Alkoxides, Carboxylates. Springer Science & Business Media. pp. 98–102. ISBN 978-3-662-06315-6.
  18. ^ Bagnall, Kenneth W. (2013-12-12). Th Thorium: Compounds with Carbon: Carbonates, Thiocyanates, Alkoxides, Carboxylates. Springer Science & Business Media. p. 10. ISBN 978-3-662-06315-6.
  19. ^ L. N. Essen, D. P. Alekseeva. "The production of mixed oxalate-carbonate complex compounds of thorium", Dokl. Akad. Nauk SSSR, 146:2 (1962), 380–382". www.mathnet.ru. Archived from the original on 2021-07-27. Retrieved 2021-07-27.
  20. ^ a b c d e Beirakhov, A. G.; Orlova, I. M.; Mikhailov, Yu. N. (December 2014). "Coordination modes of α-dioximes in uranyl complexes". Russian Journal of Inorganic Chemistry. 59 (14): 1679–1690. doi:10.1134/S0036023614140022. ISSN 0036-0236. S2CID 95903987.
  21. ^ Beirakhov, A. G.; Orlova, I. M.; Il’in, E. G.; Aleksandrov, G. G.; Kanishcheva, A. S.; Mikhailov, Yu. N. (September 2010). "Uranyl complexes with ethylmethylglyoxime". Russian Journal of Inorganic Chemistry. 55 (9): 1373–1380. doi:10.1134/S003602361009007X. ISSN 0036-0236. S2CID 97458234.
  22. ^ a b Beirakhov, A. G.; Orlova, I. M.; Il’in, E. G.; Kanishcheva, A. S.; Churakov, A. V.; Mikhailov, Yu. N. (July 2012). "Uranyl complexes with methyl derivatives of alicyclic dioximes". Russian Journal of Inorganic Chemistry. 57 (7): 945–952. doi:10.1134/S0036023612070054. ISSN 0036-0236. S2CID 97320941.
  23. ^ a b Beirakhov, A. G.; Orlova, I. M.; Rotov, A. V.; Il’in, E. G.; Goeva, L. V.; Surazhskaya, M. D.; Churakov, A. V.; Mikhailov, Yu. N. (December 2016). "Conformation of diethylglyoxime in uranyl complexes". Russian Journal of Inorganic Chemistry. 61 (12): 1522–1529. doi:10.1134/S0036023616120032. ISSN 0036-0236. S2CID 100478539.
  24. ^ Fedoseev, A. M.; Grigor’ev, M. S.; Yusov, A. B. (September 2012). "Interaction of tetravalent actinides and Np(V) with some hydroxy carboxylic acids". Radiochemistry. 54 (5): 443–451. doi:10.1134/S1066362212050049. ISSN 1066-3622. S2CID 95387998.
  25. ^ Kartushova, R. E.; Rudenko, T. I.; Fomin, V. V. (1958). "Thermal decomposition of tetravalent and trivalent plutonium oxalates" (PDF). The Soviet Journal of Atomic Energy. 5 (1): 831–835. doi:10.1007/BF01505392. S2CID 94605282.