Violacein

From WikiProjectMed
Jump to navigation Jump to search
Violacein
Names
IUPAC name
(3E)-3-[5-(5-Hydroxy-1H-indol-3-yl)-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one
Other names
3-(2-(5-Hydroxyindol-3-yl)-5-oxo-2-pyrrolin-4-ylidene)-2-indolinone
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
UNII
  • InChI=1S/C20H13N3O3/c24-10-5-6-15-12(7-10)14(9-21-15)17-8-13(19(25)23-17)18-11-3-1-2-4-16(11)22-20(18)26/h1-9,21,23-25H
    Key: SHLJIZCPRXXHHZ-UHFFFAOYSA-N
  • C1=CC=C2C(=C1)/C(=C\3/C=C(NC3=O)C4=CNC5=C4C=C(C=C5)O)/C(=O)N2
Properties
C20H13N3O3
Molar mass 343.342 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Violacein is a naturally-occurring bis-indole pigment with antibiotic (anti-bacterial, anti-viral, anti-fungal and anti-tumor) properties.[1][2][3][4] Violacein is produced by several species of bacteria, including Chromobacterium violaceum, and gives these organisms their striking purple hues. Violacein shows increasing commercially interesting uses, especially for industrial applications in cosmetics, medicines and fabrics.

Biosynthesis

Violacein is formed by enzymatic condensation of two tryptophan molecules, requiring the action of five proteins. The genes required for its production, vioABCDE, and the regulatory mechanisms employed have been studied within a small number of violacein-producing strains.[2] Production of violacein is controlled by quorum sensing using acyl-homoserine lactones (AHLs).[5]

Only a few genera of bacteria have been reported to produce violacein. These include Chromobacterium, Duganella, Pseudoalteromonas,[6] Janthinobacterium,[7] Iodobacter, Rugamonas,[8] and Massilia[5].[9]

Antibiotic activity

Violacein is known to have diverse biological activities, including as a cytotoxic anticancer agent and antibacterial action against Staphylococcus aureus and other gram-positive pathogens.[1][3][10][11] Determining the biological roles of this pigmented molecule has been of particular interest to researchers, and understanding violacein's function and mechanism of action is relevant to potential applications. Commercial production of violacein and related compounds has proven difficult so improving fermentative yields of violacein is being pursued through genetic engineering and synthetic biology.[2]

References

  1. ^ a b Durán N, Justo GZ, Durán M, Brocchi M, Cordi L, Tasic L, et al. (2016). "Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review". Biotechnology Advances. 34 (5): 1030–1045. doi:10.1016/j.biotechadv.2016.06.003. PMID 27288924.
  2. ^ a b c Myeong NR, Seong HJ, Kim HJ, Sul WJ (April 2016). "Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1". Journal of Biotechnology. 223: 36–37. doi:10.1016/j.jbiotec.2016.02.027. PMID 26916415.
  3. ^ a b Choi SY, Yoon KH, Lee JI, Mitchell RJ (2015). "Violacein: Properties and Production of a Versatile Bacterial Pigment". BioMed Research International. 2015: 465056. doi:10.1155/2015/465056. PMC 4538413. PMID 26339614.
  4. ^ Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simões CM (September 2003). "Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum". Memórias do Instituto Oswaldo Cruz. 98 (6): 843–848. doi:10.1590/s0074-02762003000600023. PMID 14595466.
  5. ^ a b Park H, Park S, Yang YH, Choi KY (September 2021). "Microbial synthesis of violacein pigment and its potential applications". Critical Reviews in Biotechnology. 41 (6): 879–901. doi:10.1080/07388551.2021.1892579. PMID 33730942. S2CID 232304130.
  6. ^ Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, et al. (March 2008). "Isolation and characterization of two groups of novel marine bacteria producing violacein". Marine Biotechnology. 10 (2): 128–132. Bibcode:2008MarBt..10..128Y. doi:10.1007/s10126-007-9046-9. PMID 17968625. S2CID 19143787.
  7. ^ Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G (April 2013). "Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov". Antonie van Leeuwenhoek. 103 (4): 763–769. doi:10.1007/s10482-012-9858-0. PMID 23192307. S2CID 17940699.
  8. ^ Sedláček I, Holochová P, Sobotka R, Busse HJ, Švec P, Králová S, et al. (September 2021). Gralnick JA (ed.). "Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov". Microbiology Spectrum. 9 (1): e0045221. doi:10.1128/Spectrum.00452-21. PMC 8552646. PMID 34378950.
  9. ^ Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, et al. (March 2022). "Characterisation of Waterborne Psychrophilic Massilia Isolates with Violacein Production and Description of Massilia antarctica sp. nov". Microorganisms. 10 (4): 704. doi:10.3390/microorganisms10040704. PMC 9028926. PMID 35456753.
  10. ^ Lichstein HC, Van De Sand VF (July 1946). "The Antibiotic Activity of Violacein, Prodigiosin, and Phthiocol". Journal of Bacteriology. 52 (1): 145–146. doi:10.1128/JB.52.1.145-146.1946. PMC 518152. PMID 16561146.
  11. ^ Lichstein HC, Van De Sand VF (1945). "Violacein, an Antibiotic Pigment Produced by Chromobacterium violaceum". Journal of Infectious Diseases. 76 (1): 47–51. doi:10.1093/infdis/76.1.47. JSTOR 30085685.

Further reading