User:Alksentrs/Table of mathematical symbols (testing)

From WikiProjectMed
Jump to navigation Jump to search

Test version of the article Table of mathematical symbols.

Symbol
(HTML)
Symbol
(TeX)
Name Explanation Examples
Read as
Category
|…|
absolute value or modulus |x| means the distance along the real line (or across the complex plane) between x and zero. |3| = 3

|–5| = |5| = 5

i | = 1

| 3 + 4i | = 5
absolute value (modulus) of
numbers
Euclidean distance |x – y| means the Euclidean distance between x and y. For x = (1,1), and y = (4,5),
|x – y| = √([1–4]2 + [1–5]2) = 5
Euclidean distance between; Euclidean norm of
geometry
determinant |A| means the determinant of the matrix A
determinant of
matrix theory
cardinality |X| means the cardinality of the set X.

(# ormay be used instead as described below.)
|{3, 5, 7, 9}| = 4.
cardinality of; size of
set theory
#



cardinality #X means the cardinality of the set X.

(|…| may be used instead as described above.)
#{4, 6, 8} = 3
cardinality of; size of
set theory
|
divides A single vertical bar is used to denote divisibility.
a|b means a divides b.
Since 15 = 3×5, it is true that 3|15 and 5|15.
divides
number theory
conditional probability A single vertical bar is used to describe the probability of an event given another event happening.
P(A|B) means a given b.
If P(A)=0.4 and P(B)=0.5, P(A|B)=((0.4)(0.5))/(0.5)=0.4
given
probability
!
factorial n! is the product 1 × 2 × ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
T

tr


transpose Swap rows for columns If then .
transpose
matrix operations
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics
row equivalence A~B means that B can be generated by using a series of elementary row operations on A
is row equivalent to
matrix theory
same order of magnitude m ~ n means the quantities m and n have the same order of magnitude, or general size.

(Note that ~ is used for an approximation that is poor, otherwise use ≈ .)
2 ~ 5

8 × 9 ~ 100

but π2 ≈ 10
roughly similar; poorly approximates
approximation theory
asymptotically equivalent f ~ g means . x ~ x+1

is asymptotically equivalent to
asymptotic analysis
equivalence relation a ~ b means (and equivalently ). 1 ~ 5 mod 4

are in the same equivalence class
everywhere
approximately equal x ≈ y means x is approximately equal to y. π ≈ 3.14159
is approximately equal to
everywhere
isomorphism G ≈ H means that group G is isomorphic (structurally identical) to group H.

(≅ can also be used for isomorphic, as described below.)
Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
normal subgroup N ◅ G means that N is a normal subgroup of group G. Z(G) ◅ G
is a normal subgroup of
group theory
ideal I ◅ R means that I is an ideal of ring R. (2) ◅ Z
is an ideal of
ring theory
therefore Sometimes used in proofs before logical consequences. All humans are mortal. Socrates is a human. ∴ Socrates is mortal.
therefore; so; hence
everywhere
because Sometimes used in proofs before reasoning. 3331 is prime ∵ it has no positive integer factors other than itself and one.
because; since
everywhere








material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

(→ may mean the same as, or it may have the meaning for functions given below.)

(⊃ may mean the same as, or it may have the meaning for superset given below.)
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if … then
propositional logic, Heyting algebra




material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜


logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.

(The symbol ~ has many other uses, so ¬ or the slash notation is preferred.)
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false.

For functions A(x) and B(x), A(x) ∧ B(x) is used to mean min(A(x), B(x)).

(Old notation) uv means the cross product of vectors u and v.
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and; min
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false.

For functions A(x) and B(x), A(x) ∨ B(x) is used to mean max(A(x), B(x)).
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or; max
propositional logic, lattice theory




exclusive or The statement AB is true when either A or B, but not both, are true. AB means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
direct sum The direct sum is a special way of combining several modules into one general module (the symbol ⊕ is used, ⊻ is only for logic). Most commonly, for vector spaces U, V, and W, the following consequence is used:
U = VW ⇔ (U = V + W) ∧ (VW = {0})
direct sum of
abstract algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ ℕ: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ℕ: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ℕ: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔








definition x := y or x ≡ y means x is defined to be another name for y, under certain assumptions taken in context.

(Some writers useto mean congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
is defined as; equal by definition
everywhere
congruence △ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.
is congruent to
geometry
isomorphic G ≅ H means that group G is isomorphic (structurally identical) to group H.

(≈ can also be used for isomorphic, as described above.)
.
is isomorphic to
abstract algebra