Stemmadenine

From WikiProjectMed
Jump to navigation Jump to search
Stemmadenine
Names
IUPAC name
Methyl (19E)-17-hydroxy-2,7,19,20-tetradehydro-3,7-seco-15β-curan-16-carboxylate
Systematic IUPAC name
Methyl (5E,6R,7S)-5-ethylidene-7-(hydroxymethyl)-1,4,5,6,7,8-hexahydro-2H-3,6-ethanoazonino[5,4-b]indole-7-carboxylate
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
UNII
  • InChI=1S/C21H26N2O3/c1-3-14-12-23-10-8-16-15-6-4-5-7-18(15)22-19(16)21(13-24,20(25)26-2)17(14)9-11-23/h3-7,17,22,24H,8-13H2,1-2H3/b14-3-/t17-,21+/m1/s1
    Key: MBXJCHZRHROMQA-YVDMJPQFSA-N
  • InChI=1/C21H26N2O3/c1-3-14-12-23-10-8-16-15-6-4-5-7-18(15)22-19(16)21(13-24,20(25)26-2)17(14)9-11-23/h3-7,17,22,24H,8-13H2,1-2H3/b14-3-/t17-,21+/m1/s1
    Key: MBXJCHZRHROMQA-YVDMJPQFBN
  • C/C=C\1/CN2CC[C@H]1[C@](C3=C(CC2)C4=CC=CC=C4N3)(CO)C(=O)OC
Properties
C21H26N2O3
Molar mass 354.450 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Stemmadenine is a terpene indole alkaloid. Stemmadenine is believed to be formed from preakuammicine by a carbon-carbon bond cleavage. Cleavage of a second carbon-carbon bond is thought to form dehydrosecodine.[1] The enzymes forming stemmadenine and using it as a substrate remain unknown to date. It is thought to be intermediate compound in many different biosynthetic pathways[2][3][4] such as in Aspidosperma species.[5] Many alkaloids are proposed to be produced through intermediate stemmadenine. Some of them are:

It is also present as product in plant like in Tabernaemontana dichotoma seeds.[6]

Pharmacology

It has hypotensive and weak muscle relaxant properties.[6]

See also

References

  1. ^ Scott AI, Qureshi AA (1969). "Biogenesis of Strychnos, Aspidosperma, and Iboga alkaloids. Structure and reactions of preakuammicine". Journal of the American Chemical Society. 91 (21): 5874–6. doi:10.1021/ja01049a032. PMID 5812148.
  2. ^ a b Qu Y, Easson ME, Simionescu R, Hajicek J, Thamm AM, Salim V, De Luca V (March 2018). "Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine". Proceedings of the National Academy of Sciences of the United States of America. 115 (12): 3180–3185. Bibcode:2018PNAS..115.3180Q. doi:10.1073/pnas.1719979115. PMC 5866588. PMID 29511102.
  3. ^ a b Kalshetti MG, Argade NP (2020). "The indole-based subincanadine alkaloids and their biogenetic congeners". The Alkaloids. Chemistry and Biology. 83: 187–223. doi:10.1016/bs.alkal.2019.12.001. ISBN 9780128209813. PMID 32098650. S2CID 211524741.
  4. ^ a b El-Sayed M, Choi YH, Frédérich M, Roytrakul S, Verpoorte R (May 2004). "Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine". Biotechnology Letters. 26 (10): 793–8. doi:10.1023/b:bile.0000025879.53632.f2. PMID 15269549. S2CID 22411370.
  5. ^ de Almeida VL, Silva CG, Silva AF, Campana PR, Foubert K, Lopes JC, Pieters L (March 2019). "Aspidosperma species: A review of their chemistry and biological activities". Journal of Ethnopharmacology. 231: 125–140. doi:10.1016/j.jep.2018.10.039. hdl:10067/1556490151162165141. PMID 30395977. S2CID 53223901.
  6. ^ a b Perera P, Kanjanapothy D, Sandberg F, Verpoorte R (May 1985). "Muscle relaxant activity and hypotensive activity of some Tabernaemontana alkaloids". Journal of Ethnopharmacology. 13 (2): 165–73. doi:10.1016/0378-8741(85)90004-2. PMID 4021514.