Rhodanine

From WikiProjectMed
Jump to navigation Jump to search
Rhodanine[1]
Names
Preferred IUPAC name
2-Sulfanylidene-1,3-thiazolidin-4-one
Other names
2-Thioxo-4-thiazolidinone; 4-Oxo-2-thioxothiazoline
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.005.005 Edit this at Wikidata
EC Number
  • 205-505-1
KEGG
UNII
  • InChI=1S/C3H3NOS2/c5-2-1-7-3(6)4-2/h1H2,(H,4,5,6) checkY
    Key: KIWUVOGUEXMXSV-UHFFFAOYSA-N checkY
  • InChI=1/C3H3NOS2/c5-2-1-7-3(6)4-2/h1H2,(H,4,5,6)
    Key: KIWUVOGUEXMXSV-UHFFFAOYAP
  • O=C1NC(=S)SC1
Properties
C3H3NOS2
Molar mass 133.18 g·mol−1
Density 0.868 g/cm−3[2]
Melting point 170 °C (338 °F; 443 K)[2]
Soluble[2]
Solubility Ethanol, dimethyl sulfoxide[2]
Hazards
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation mark
Danger
H302, H318
P264, P270, P280, P301+P312, P305+P351+P338, P310, P330, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Rhodanine is a 5-membered heterocyclic organic compound possessing a thiazolidine core. It was discovered in 1877 by Marceli Nencki who named it "Rhodaninsaure" in reference to its synthesis from ammonium rhodanide (known as ammonium thiocyanate to modern chemists) and chloroacetic acid in water.[3]

Rhodanines can also be prepared by the reaction of carbon disulfide, ammonia, and chloroacetic acid, which proceeds via an intermediate dithiocarbamate.[4]

Derivatives

Some rhodanine derivatives have pharmacological properties; for instance, epalrestat is used to treat diabetic neuropathy. However, most are promiscuous binders with poor selectivity; as a result, this class of compounds is viewed with suspicion by medicinal chemists.[5][6][7] Differing academic opinions exist concerning the correct use of PAINS filters, the necessity of the experimental confirmations of such properties, and many useful features of rhodanine derivatives.[8][9]

References

  1. ^ Rhodanine at Sigma-Aldrich
  2. ^ a b c d Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 3.512. ISBN 978-1439855119.
  3. ^ Nencki, M. (10 July 1877). "Ueber die Einwirkung der Monochloressigsäure auf Sulfocyansäure und ihre Salze". Journal für Praktische Chemie. 16 (1): 1–17. doi:10.1002/prac.18770160101.
  4. ^ Redemann, C. Ernst; Icke, Roland N.; Alles, Gordon A. (1955). "Rhodanine". Organic Syntheses; Collected Volumes, vol. 3, p. 763.
  5. ^ Baell, J. B; Holloway, G. A (2010). "New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays". J. Med. Chem. 53 (7): 2719–2740. CiteSeerX 10.1.1.394.9155. doi:10.1021/jm901137j. PMID 20131845.
  6. ^ Tomašić, Tihomir; Peterlin Mašič, Lucija (2012). "Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation". Expert Opinion on Drug Discovery. 7 (7): 549–60. doi:10.1517/17460441.2012.688743. PMID 22607309. S2CID 3401210.
  7. ^ Pouliot, Martin; Jeanmart, Stephane (8 September 2015). "Pan Assay Interference Compounds (PAINS) and Other Promiscuous Compounds in Antifungal Research". Journal of Medicinal Chemistry. 59 (2): 497–503. doi:10.1021/acs.jmedchem.5b00361. PMID 26313340.
  8. ^ Kaminskyy, D; Kryshchyshyn, A; Lesyk, R (2017). "Recent developments with rhodanine as a scaffold for drug discovery". Expert Opinion on Drug Discovery. 12 (12): 1233–1252. doi:10.1080/17460441.2017.1388370. PMID 29019278. S2CID 3514481.
  9. ^ Kaminskyy, D; Kryshchyshyn, A; Lesyk, R (2017). "5-Ene-4-thiazolidinonese An efficient tool in medicinal chemistry". Eur. J. Med. Chem. 140 (10): 542–594. doi:10.1016/j.ejmech.2017.09.031. PMC 7111298. PMID 28987611.