MDA-MB231

From WikiProjectMed
Jump to navigation Jump to search

MDA-MB-231 (M D Anderson - Metastatic Breast - 231) is a human breast cancer cell line isolated at M D Anderson in 1973 that is used in therapeutic research, especially in the context of triple negative breast cancer.[1][2]

History and characteristics

MDA-MB-231 cells were derived from a pleural effusion due to an adenocarcinoma originating in a 51-year-old caucasian female.[2] The cell line is triple negative, meaning it lacks oestrogen receptors, progesterone receptors, and HER2 (human epidermal growth factor receptor 2) amplification which many current treatment options rely on making it difficult to cure.[3][4] In addition, this cell line has a low expression of the Ki-67 proliferation marker, down regulation of claudin-3 and claudin-4, enrichment for markers associated with the epithelial-mesenchymal transition and the CD44+CD24-/low phenotype associated with breast cancer stem cells and increased metastasis,[5][6][7] and is a mutant in the p53 and KRas oncogenes.[8][9] The cells are considered biosafety level 1. They can be grown in 2 or 3-D cultures.[10]

Research applications

MDA-MB-231 is used to study potential treatments for a cancer with currently limited treatment options by either improving current medication delivery and efficacy,[11][12] or by trying new treatment courses.[13][14]

This cell line has also been utilized to study metastasis to the bones[15][16] and lungs.[16][17]

See also

References

  1. ^ Cailleau R, Young R, Olivé M, Reeves WJ (September 1974). "Breast tumor cell lines from pleural effusions". Journal of the National Cancer Institute. 53 (3): 661–674. doi:10.1093/jnci/53.3.661. PMC 7364228. PMID 4412247.
  2. ^ a b "Cellosaurus MDA-MB-231 (CVCL_0062)". Cellosaurus. January 30, 2024.
  3. ^ Liu H, Zang C, Fenner MH, Possinger K, Elstner E (May 2003). "PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro". Breast Cancer Research and Treatment. 79 (1): 63–74. doi:10.1023/a:1023366117157. PMID 12779083. S2CID 25517953.
  4. ^ Chavez KJ, Garimella SV, Lipkowitz S (2010). "Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer". Breast Disease. 32 (1–2): 35–48. doi:10.3233/BD-2010-0307. PMC 3532890. PMID 21778573.
  5. ^ Holliday DL, Speirs V (August 2011). "Choosing the right cell line for breast cancer research". Breast Cancer Research. 13 (4): 215. doi:10.1186/bcr2889. PMC 3236329. PMID 21884641.
  6. ^ Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. (2010). "Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer". Breast Cancer Research. 12 (5): R68. doi:10.1186/bcr2635. PMC 3096954. PMID 20813035.
  7. ^ Gowrikumar S, Singh AB, Dhawan P (December 2019). "Role of Claudin Proteins in Regulating Cancer Stem Cells and Chemoresistance-Potential Implication in Disease Prognosis and Therapy". International Journal of Molecular Sciences. 21 (1): 53. doi:10.3390/ijms21010053. PMC 6982342. PMID 31861759.
  8. ^ Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M, et al. (May 2010). "Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines" (PDF). Breast Cancer Research and Treatment. 121 (1): 53–64. doi:10.1007/s10549-009-0460-8. PMID 19593635. S2CID 22587331.
  9. ^ Kim RK, Suh Y, Yoo KC, Cui YH, Kim H, Kim MJ, et al. (January 2015). "Activation of KRAS promotes the mesenchymal features of basal-type breast cancer". Experimental & Molecular Medicine. 47 (1): e137. doi:10.1038/emm.2014.99. PMC 4314588. PMID 25633745.
  10. ^ Huang Z, Yu P, Tang J (2020-06-11). "Characterization of Triple-Negative Breast Cancer MDA-MB-231 Cell Spheroid Model". OncoTargets and Therapy. 13: 5395–5405. doi:10.2147/OTT.S249756. PMC 7295545. PMID 32606757.
  11. ^ Mohammed F, Rashid-Doubell F, Taha S, Cassidy S, Fredericks S (August 2020). "Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation". International Journal of Oncology. 57 (2): 445–455. doi:10.3892/ijo.2020.5065. PMC 7307592. PMID 32626932.
  12. ^ Raut J, Sarkar O, Das T, Mandal SM, Chattopadhyay A, Sahoo P (December 2023). "Efficient delivery of methotrexate to MDA-MB-231 breast cancer cells by a pH-responsive ZnO nanocarrier". Scientific Reports. 13 (1): 21899. Bibcode:2023NatSR..1321899R. doi:10.1038/s41598-023-49464-9. PMC 10713526. PMID 38081993.
  13. ^ Liu S, Dong Y, Wang Y, Hu P, Wang J, Wang RY (December 2021). "Pristimerin exerts antitumor activity against MDA-MB-231 triple-negative breast cancer cells by reversing of epithelial-mesenchymal transition via downregulation of integrin β3". Biomedical Journal. 44 (6 Suppl 1): S84–S92. doi:10.1016/j.bj.2020.07.004. PMC 9038948. PMID 35652598.
  14. ^ Govindaraj S, Ganesan K, Dharmasivam M, Raman L, Alam MM, Amanullah M (October 2023). "Synthesis of potent MDA-MB 231 breast cancer drug molecules from single step". Scientific Reports. 13 (1): 18241. Bibcode:2023NatSR..1318241G. doi:10.1038/s41598-023-45455-y. PMC 10600176. PMID 37880270.
  15. ^ Wright LE, Ottewell PD, Rucci N, Peyruchaud O, Pagnotti GM, Chiechi A, et al. (2016). "Murine models of breast cancer bone metastasis". BoneKEy Reports. 5: 804. doi:10.1038/bonekey.2016.31. PMC 5108088. PMID 27867497.
  16. ^ a b Jekabsons MB, Merrell M, Skubiz AG, Thornton N, Milasta S, Green D, et al. (February 2023). "Breast cancer cells that preferentially metastasize to lung or bone are more glycolytic, synthesize serine at greater rates, and consume less ATP and NADPH than parent MDA-MB-231 cells". Cancer & Metabolism. 11 (1): 4. doi:10.1186/s40170-023-00303-5. PMC 9940388. PMID 36805760.
  17. ^ Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. (July 2005). "Genes that mediate breast cancer metastasis to lung". Nature. 436 (7050): 518–524. Bibcode:2005Natur.436..518M. doi:10.1038/nature03799. PMC 1283098. PMID 16049480.