Fluoroiodate

From WikiProjectMed
Jump to navigation Jump to search

A fluorooxoiodate or fluoroiodate is a chemical compound or ion derived from iodate, by substituting some of the oxygen by fluorine. They have iodine in the +5 oxidation state. The iodine atoms have a stereochemically active lone-pair of electrons. Many are non-centrosymmetric, and are second harmonic generators (SHG) of intense light shining through them. They are under investigation as materials for non-linear optics, such as for generating ultraviolet light from visible or infrared lasers.[1]

Different ions include [IOF4], [IO2F2], [IO3F]2−, and [I2O5F2]2−.

They are distinct from the fluoride iodates which are mixed anion compounds that do not have fluorine-iodine bonds.[1]

Properties

Fluoroiodates are transparent in visible, longer wave ultraviolet and some of the infrared electromagnetic bands.[1]

Compared to iodate, the I-O bonds are shorter, and I-F bonds are longer in fluoroiodates. The I-F bond is about 0.2 Å longer than the I-O bond. The fluorine atoms repel each other in [IO2F2] and are almost opposite each other. The ∠OIF angle is close to 90° and the oxygen atoms ∠OFO are at about 102°,[2] so they resemble an octahedral arrangement, with two adjacent positions deleted.[1]

List

formula crystal space group unit cell volume density band

gap eV

SHG

× KDP

1064 nm

comment reference
NH4IO2F2 orthorhombic Pca21 a=8.639 b=6.166 c=8.629 Z=4 459.7 4.53 1.2 [2]
(NH4)3(IO2F2)3·H2O orthorhombic Pnma a=15.102 b=12.685 c=7.369 Z=4 1411.8 4.55 no [2]
[C(NH2)3]+[IF2O2] triclinic P1 a = 6.6890 b = 10.2880 c = 10.30.92 α = 105.447 β = 108.568 γ = 91.051° Z=4 644.08 2.650 4.81 explosive; birefringence Δn = 0.110 [3][4]
(C(NH2)3)2(I2O5F)(IO3)(H2O) monoclinic P21/c a=7.4388 b=19.2679 c=11.0753 β=106.289° Z=4 1523.70 4.49 birefringence Δn = 0.068 [4]
NaIO2F2 orthorhombic Cmcm a=6.929 b=7.274 c=7.350 Z=4 370.42 0 [5]
KIO2F2 orthorhombic Pca21 a=8.3943 b=5.9792 c=8.4468 Z=4 423.95 0 ferroelastic; when compressed on 001 axis IO2F2 units rotate with abc transforming to cba; [5][6][7]
CoIO3F monoclinic P21/n a=4.9954 b=5.2110 c=12.5179 β=95.347° [8]
NiIO3F monoclinic P21/n [8]
ZnIO3F monoclinic P21/m 4.2 0.00 birefringence 0.219 at 546 nm [1]
[GaF(H2O)][IO3F] orthorhombic Pca21 a=13.954 b=6.9261 c=4.7629 4.34 10 laser damage threshold 298.40 MW cm−2; decompose 300 °C; dipole moment density: 0.0908 D Å−3 [9]
NaGaI3O9F monoclinic P21/c _a=14.120 b=4.9149 c=13.63 β=112.968° Z=4 871.0 4.853 4.27 0 [Ga2(IO3F)2(IO3)4]2− layers sandwiching Na+; birefringence Δnexp ~ 0.203 at 1064 nm [10]
RbIO2F2 orthorhombic Pca21 a=8.567 b=6.151 c=8.652 Z=4 455.92 4.2 4 [5]
SrI2O5F2 monoclinic P21/c a=10.462 b=7.272 c=8.306 β=109.699° Z=4 594.9 3.68 0 [11]
Sr4O(IO3)3(I3O7F3)BF4 R3c a=9.7216 c=38.759 absorption band at 250 nm; decompose 380 °C [12]
CdIO3F P212121 4.22 6.2 [1]
Rb2MoO2F3(IO2F2) orthorhombic Cmc21 a 11.806 b 10.128 c 7.6661 3.77 5 [1][13]
CsIO2F2 orthorhombic Pca21 a=8.781 b=6.377 c=8.868 Z=4 496.58 4.5 3 [5]
Cs3(IO2F2)3•H2O Pnma 3.37 0 [1]
Cs(IO2F2)2•H2O•H3O monoclinic P21/c 2.77 0 [1]
CsIO4 Pnma 0 [1]
Cs2VOF4(IO2F2) orthorhombic Cmc21 a=12.188 b=10.349 c=7.779 Z=4 981.2 4.100 2.88 5 yellow at 1064 nm [14]
Cs2MoO2F3(IO2F2) orthorhombic Cmc21 a =12.2153 b =10.4656 c =7.8560 3.43 4.5 [1][13]
BaIO3F monoclinic P21/c 4.32 0 [15]
Ba(IO2F2)2 monoclinic P21/c a=10.747 b=7.161 c=9.086 β=93.748° Z=4 697.7 3.99 0 UV cut off 230 nm [11]
BaI2O5F2 monoclinic P21/c a=10.750 b=7.599 c=8.598 β=109.753° birefringence Δn= 0.174 at 1064 nm [16]
BaIO2F3 orthorhombic Cmca a=6.334 b=6.343 c=23.300 4.27 0 birefringence Δn=0.133 at 1064 nm [16]
Ba2[GaF5(IO3F)] monoclinic P21/c a=7.5065 b=7.4160 c=14.5932 β=100.363° birefringence Δn=0.068 at 550 nm; UV edge 230 nm; transparent 0.34–11.9 μm [17]
CaCe(IO3)3(IO3F)F orthorhombic Pna21 a=11.068 b=18.15 c=6.0301 Z=4 1211.3 5.033 2,72 5 pale-yellow; birefringence 0.071 at 1064 nm SHG 5×KDP at 1064 nm [18]
Rb2WO2F3(IO2F2) orthorhombic Cmc21 a=11.726 b=10.188 c=7.666 4.42 [19]
Cs2WO2F3(IO2F2) orthorhombic Cmc21 a=12.1122 b=10.6192 c =7.8333 4.29 [19]
Pb4O(IO3)3(I3O7F3)BF4 R3c a =9.8184 c =38.867 absorption band at 283 nm; decompose 300 °C [12]
KBi2(IO3)2F5 monoclinic P21 a=5.687 b = 5.864 c = 14.815 β=100.095º Z = 2 486.5 6.157 colourless [20]
RbBi2(IO3)2F5 monoclinic P21 a=5.7347 b = 5.9095 c = 15.117 β=100.263º Z = 2 506.20 6.221 colourless [20]
CsBi2(IO3)2F5 monoclinic P21 a=5.750 b = 5.864 c = 15.640 β=100.509º Z = 2 523.8 6.313 colourless [20]

References

  1. ^ a b c d e f g h i j k Gao, Dong; Wu, Hongping; Hu, Zhanggui; Wang, Jiyang; Wu, Yicheng; Yu, Hongwei (January 2023). "Recent advances in F-containing iodate nonlinear optical materials". Chinese Journal of Structural Chemistry. 42 (1): 100014. doi:10.1016/j.cjsc.2023.100014. S2CID 255888212.
  2. ^ a b c Huang, Jianlong; Guo, Fengjiao; Guo, Zhiyong; Chen, Jianbang; Dai, Bin; Yu, Feng (2022-08-01). "NH 4 IO 2 F 2 and (NH 4 ) 3 (IO 2 F 2 ) 3 ·H 2 O: A Series of Ammonium-Containing Fluoroiodates with Wide Band Gaps". Inorganic Chemistry. 61 (30): 11803–11810. doi:10.1021/acs.inorgchem.2c01540. ISSN 0020-1669. PMID 35860841. S2CID 250731650.
  3. ^ Fischer, Dennis; Klapötke, Thomas M.; Stierstorfer, Jörg (May 2011). "Synthesis and Characterization of Guanidinium Difluoroiodate, [C(NH2)3]+[IF2O2]- and its Evaluation as an Ingredient in Agent Defeat Weapons‡". Zeitschrift für anorganische und allgemeine Chemie. 637 (6): 660–665. doi:10.1002/zaac.201100052.
  4. ^ a b Cui, Juhui; Wang, Shibin; Tudi, Abudukadi; Gai, Minqiang; Yang, Zhihua; Pan, Shilie (2023-12-22). "(C(NH 2 ) 3 ) 2 (I 2 O 5 F)(IO 3 )(H 2 O) and C(NH 2 ) 3 IO 2 F 2 : Two Guanidine Fluorooxoiodates with Wide Band Gap and Large Birefringence". Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c03551. ISSN 0020-1669. PMID 38131323. S2CID 266468595.
  5. ^ a b c d Wang, Shibin; Zhang, Jie; Chen, Jianbang; Han, Peng; Lei, Na; Huang, Xuchu (2023). "Enhancement of birefringence and refractive index dispersion optimization from iodates to fluorooxoiodates". New Journal of Chemistry. 47 (26): 12145–12151. doi:10.1039/D3NJ01908J. S2CID 258852807.
  6. ^ Helmholz, Lindsay; Rogers, M. T. (June 1940). "The Crystal Structure of Potassium Fluoroiodate, KIO 2 F 2". Journal of the American Chemical Society. 62 (6): 1537–1542. doi:10.1021/ja01863a058. ISSN 0002-7863.
  7. ^ Abrahams, S. C.; Bernstein, J. L. (1976-04-15). "Ferroelastic KIO2F2: Crystal structure and ferroelastic transformation". The Journal of Chemical Physics. 64 (8): 3254–3260. Bibcode:1976JChPh..64.3254A. doi:10.1063/1.432666. ISSN 0021-9606.
  8. ^ a b Liu, Hang; Wang, Yanhong; Zhou, Yadong; Li, Shuang; Dou, Yaling; Wang, Tao; Lu, Hongcheng (2022-11-07). "MIO 3 F (M = Co and Ni): Magnetic Iodate Fluorides with Zigzag Chains". Inorganic Chemistry. 61 (44): 17838–17847. doi:10.1021/acs.inorgchem.2c03167. ISSN 0020-1669. PMID 36285503. S2CID 253119337.
  9. ^ Huang, Qian-Ming; Hu, Chun-Li; Yang, Bing-Ping; Fang, Zhi; Lin, Yuan; Chen, Jin; Li, Bing-Xuan; Mao, Jiang-Gao (2021). "[GaF(H 2 O)][IO 3 F]: a promising NLO material obtained by anisotropic polycation substitution". Chemical Science. 12 (27): 9333–9338. doi:10.1039/D1SC01401C. ISSN 2041-6520. PMC 8278931. PMID 34349903.
  10. ^ Wang, Dandan; Gong, Pifu; Zhang, Xinyuan; Lin, Zheshuai; Hu, Zhanggui; Wu, Yicheng (2021). "NaGaI 3 O 9 F: a new alkali metal gallium iodate combined with IO 3 − and IO 3 F 2− units". Dalton Transactions. 50 (33): 11562–11567. doi:10.1039/D1DT02122B. ISSN 1477-9226. PMID 34351353. S2CID 236927523.
  11. ^ a b Gai, Minqiang; Tong, Tinghao; Wang, Ying; Yang, Zhihua; Pan, Shilie (2020-07-14). "New Alkaline-Earth Metal Fluoroiodates Exhibiting Large Birefringence and Short Ultraviolet Cutoff Edge with Highly Polarizable (IO 3 F) 2– Units". Chemistry of Materials. 32 (13): 5723–5728. doi:10.1021/acs.chemmater.0c01452. ISSN 0897-4756. S2CID 225712371.
  12. ^ a b Xu, Yiyi; Zhou, Yuqiao; Lin, Chensheng; Li, Bingxuan; Hao, Xia; Ye, Ning; Luo, Min (2021-12-01). "M 4 O(IO 3 ) 3 (I 3 O 7 F 3 )BF 4 (M = Pb, Sr): Promising Nonlinear Optical Materials Featuring the Unprecedented Windmill-Shaped [I 3 O 7 F 3 ] 2– Polyfluoroiodate Anion". Crystal Growth & Design. 21 (12): 7098–7103. doi:10.1021/acs.cgd.1c00992. ISSN 1528-7483. S2CID 244426909.
  13. ^ a b Hu, Yilei; Jiang, Xingxing; Wu, Chao; Huang, Zhipeng; Lin, Zheshuai; Humphrey, Mark G.; Zhang, Chi (2021-07-27). "A 2 MoO 2 F 3 (IO 2 F 2 ) ( A = Rb, Cs): Strong Nonlinear Optical Responses and Enlarged Band Gaps through Fluorine Incorporation". Chemistry of Materials. 33 (14): 5700–5708. doi:10.1021/acs.chemmater.1c01434. ISSN 0897-4756. S2CID 237721401.
  14. ^ Ding, Mengmeng; Wu, Hongping; Hu, Zhanggui; Wang, Jiyang; Wu, Yicheng; Yu, Hongwei (2022). "Cs 2 VOF 4 (IO 2 F 2 ): Rationally designing a noncentrosymmetric early-transition-metal fluoroiodate". Journal of Materials Chemistry C. 10 (34): 12197–12201. doi:10.1039/D2TC02489F. ISSN 2050-7526. S2CID 251185610.
  15. ^ Okrasinski, S.; Jost, R.; Rakshapal, R.; Mitra, G. (January 1975). "Preparation and properties of barium monofluorotrioxoiodate(V), BaIO3F". Inorganica Chimica Acta. 12 (1): 247–249. doi:10.1016/S0020-1693(00)89867-9.
  16. ^ a b Zhu, Liang; Gai, Minqiang; Jin, Wenqi; Yang, Yun; Yang, Zhihua; Pan, Shilie (2021). "Barium fluoroiodate crystals with a large band gap and birefringence". Inorganic Chemistry Frontiers. 8 (12): 3127–3133. doi:10.1039/D1QI00383F. ISSN 2052-1553. S2CID 236277200.
  17. ^ Wang, Yu-Hang; Li, Fu-Ying; Jiao, Dong-Xue; Wei, Qi; Wei, Li; Yang, Guo-Yu (2023-10-17). "Optically Anisotropic Mixed-Metal Fluoroiodate Ba 2 [GaF 5 (IO 3 F)] with a Wide Optical Transparent Window and a Moderate Birefringence". Inorganic Chemistry. 62 (43): 17691–17696. doi:10.1021/acs.inorgchem.3c02213. ISSN 0020-1669. S2CID 264168584.
  18. ^ Ma, Nan; Hu, Chun-Li; Chen, Jin; Fang, Zhi; Huang, Yu; Li, Bing-Xuan; Mao, Jiang-Gao (2022). "CaCe(IO 3 ) 3 (IO 3 F)F: a promising nonlinear optical material containing both IO 3 − and IO 3 F 2− anions". Inorganic Chemistry Frontiers. 9 (21): 5478–5485. doi:10.1039/D2QI01720B. ISSN 2052-1553. S2CID 252232612.
  19. ^ a b Hu, Yilei; Jiang, Xingxing; Wu, Tianhui; Xue, Yanyan; Wu, Chao; Huang, Zhipeng; Lin, Zheshuai; Xu, Jun; Humphrey, Mark G.; Zhang, Chi (2022). "Wide bandgaps and strong SHG responses of hetero-oxyfluorides by dual-fluorination-directed bandgap engineering". Chemical Science. 13 (35): 10260–10266. doi:10.1039/D2SC02137D. ISSN 2041-6520. PMC 9473499. PMID 36277635.
  20. ^ a b c Liu, Hongming; Wu, Qi; Jiang, Xingxing; Lin, Zheshuai; Meng, Xianggao; Chen, Xingguo; Qin, Jingui (2017-08-01). "ABi 2 (IO 3 ) 2 F 5 (A=K, Rb, and Cs): A Combination of Halide and Oxide Anionic Units To Create a Large Second-Harmonic Generation Response with a Wide Bandgap". Angewandte Chemie. 129 (32): 9620–9624. Bibcode:2017AngCh.129.9620L. doi:10.1002/ange.201705672.