Cinnamtannin B1

From WikiProjectMed
Jump to navigation Jump to search
Cinnamtannin B1
Chemical structure of cinnamtannin B1
Names
IUPAC name
[(2S,3R,4R)-Flavan-3,3′,4′,5,7-pentol]-(2-oxy-7,8→4)-[(2R,3R,4S)-flavan-3,3′,4′,5-tetrol]-(4→8)-[(2R,3R)-flavan-3,3′,4′,5,7-pentol]
Systematic IUPAC name
(2R,3R,4S,8S,14R,15R)-2,8-Bis(3,4-dihydroxyphenyl)-4-[(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,4-dihydro-2H,8H,14H-8,14-methanobenzo[d]pyrano[2,3-h][1,3]benzodioxocine-3,5,11,13,15-pentol
Identifiers
3D model (JSmol)
ChemSpider
UNII
  • InChI=1S/C45H36O18/c46-18-10-27(54)33-31(11-18)62-45(17-3-6-22(49)26(53)9-17)44(59)38(33)36-32(63-45)14-29(56)35-37(39(58)41(61-43(35)36)16-2-5-21(48)25(52)8-16)34-28(55)13-23(50)19-12-30(57)40(60-42(19)34)15-1-4-20(47)24(51)7-15/h1-11,13-14,30,37-41,44,46-59H,12H2/t30-,37+,38-,39-,40-,41-,44-,45+/m1/s1 ☒N
    Key: BYSRPHRKESMCPO-LQNPQWRQSA-N ☒N
  • InChI=1/C45H36O18/c46-18-10-27(54)33-31(11-18)62-45(17-3-6-22(49)26(53)9-17)44(59)38(33)36-32(63-45)14-29(56)35-37(39(58)41(61-43(35)36)16-2-5-21(48)25(52)8-16)34-28(55)13-23(50)19-12-30(57)40(60-42(19)34)15-1-4-20(47)24(51)7-15/h1-11,13-14,30,37-41,44,46-59H,12H2/t30-,37+,38-,39-,40-,41-,44-,45+/m1/s1
    Key: BYSRPHRKESMCPO-LQNPQWRQBE
  • Oc1cc(O)c2c(c1)O[C@@]1([C@@H]([C@H]2c2c(O1)cc(c1c2O[C@H](c2ccc(c(c2)O)O)[C@@H]([C@H]1c1c(O)cc(c2c1O[C@@H]([C@@H](C2)O)c1ccc(c(c1)O)O)O)O)O)O)c1ccc(c(c1)O)O
Properties
C45H36O18
Molar mass 864.75 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Cinnamtannin B1 is a condensed tannin found in Cinnamomum verum. It falls under the category of type A proanthocyanidin.[1]

Cinnamon could potentially exhibit pharmacological effects in treating type 2 diabetes mellitus and insulin resistance. The plant material predominantly employed in the study was sourced from Chinese cinnamon (see Chinese cinnamon's medicinal uses).[2][3] Recent phytochemical research has suggested that cinnamtannin B1, extracted from C. Verum, might have a potential therapeutic impact on type 2 diabetes,[4] with the exception of postmenopausal patients studied using Cinnamomum aromaticum.[5]

Cinnamtannin B1 possesses multiple phenolic hydroxyl groups and is noted for its antioxidant properties, antimicrobial activities, and ability to inhibit platelet aggregation,[6] which could contribute to the protection of damaged tissues in wounds.[7]

References

  1. ^ Anderson; Broadhurst, CL; Polansky, MM; Schmidt, WF; Khan, A; Flanagan, VP; Schoene, NW; Graves, DJ (January 2004). "Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity". J Agric Food Chem. 52 (1): 65–70. doi:10.1021/jf034916b. PMID 14709014.
  2. ^ Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA (December 2003). "Cinnamon improves glucose and lipids of people with type 2 diabetes". Diabetes Care. 26 (12): 3215–8. doi:10.2337/diacare.26.12.3215. PMID 14633804.
  3. ^ Verspohl, Eugen J.; Bauer, K; Neddermann, E; et al. (2005). "Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum In vivo and In vitro". Phytotherapy Research. 19 (3): 203–206. doi:10.1002/ptr.1643. PMID 15934022. S2CID 32335294.
  4. ^ Taher, Muhammad; et al. "A proanthocyanidin from Cinnamomum zeylanicum stimulates phosphorylation of insulin receptor in 3T3-L1 adipocyties" (PDF). Archived from the original (PDF) on 2008-05-28. Retrieved 2008-05-11.
  5. ^ Vanschoonbeek, Kristof; et al. (2006). "Cinnamon Supplementation Does Not Improve Glycemic Control in Postmenopausal Type 2 Diabetes Patients". The Journal of Nutrition. 136 (4): 977–980. doi:10.1093/jn/136.4.977. PMID 16549460. Retrieved 2008-05-11.
  6. ^ López, J. J., Jardín, I., Salido, G. M., & Rosado, J. A. (2008). Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life sciences, 82(19), 977-982. doi:10.1016/j.lfs.2008.03.009
  7. ^ Fujita K, Kuge K, Ozawa N, Sahara S, Zaiki K, Nakaoji K, et al. (2015) Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice. PLoS ONE 10(12): e0144166. doi:10.1371/journal.pone.0144166