Mechanical metamaterial

From WikiProjectMed
(Redirected from Mechanical metamaterials)
Jump to navigation Jump to search

Mechanical metamaterials are artificial materials with mechanical properties that are defined by their mesostructure in addition to than their composition. They can be seen as a counterpart to the rather well-known family of optical metamaterials. They are often also termed elastodynamic metamaterials and include acoustic metamaterials as a special case of vanishing shear. Their mechanical properties can be designed to have values which cannot be found in nature.[1]

Examples of mechanical metamaterials

Acoustic / phononic metamaterials

Acoustic or phononic metamaterials can exhibit acoustic properties not found in nature, such as negative effective bulk modulus,[2] negative effective mass density,[3][4] or double negativity.[5][6] They find use in (mostly still purely scientific) applications like acoustic subwavelength imaging,[7] superlensing,[8] negative refraction [9] or transformation acoustics.[10][11]

Materials with negative Poisson's ratio (auxetics)

Poisson's ratio defines how a material expands (or contracts) transversely when being compressed longitudinally. While most natural materials have a positive Poisson's ratio (coinciding with our intuitive idea that by compressing a material it must expand in the orthogonal direction), a family of extreme materials known as auxetic materials can exhibit Poisson's ratios below zero. Examples of these can be found in nature, or fabricated,[12][13] and often consist of a low-volume microstructure that grants the extreme properties to the bulk material. Simple designs of composites possessing negative Poisson's ratio (inverted hexagonal periodicity cell) were published in 1985.[14][15] In addition, certain origami folds such as the Miura fold and, in general, zigzag-based folds are also known to exhibit negative Poisson's ratio.[16][17][18][19]

Metamaterials with negative longitudinal and volumetric compressibility transitions

In a closed thermodynamic system in equilibrium, both the longitudinal and volumetric compressibility are necessarily non-negative because of stability constraints. For this reason, when tensioned, ordinary materials expand along the direction of the applied force. It has been shown, however, that metamaterials can be designed to exhibit negative compressibility transitions, during which the material undergoes contraction when tensioned (or expansion when pressured).[20] When subjected to isotropic stresses, these metamaterials also exhibit negative volumetric compressibility transitions.[21] In this class of metamaterials, the negative response is along the direction of the applied force, which distinguishes these materials from those that exhibit negative transversal response (such as in the study of negative Poisson's ratio).

Pentamode metamaterials or meta-fluids

SEM image of a pentamode metamaterial (with a size of roughly 300μm)

A pentamode metamaterial is an artificial three-dimensional structure which, despite being a solid, ideally behaves like a fluid. Thus, it has a finite bulk but vanishing shear modulus, or in other words it is hard to compress yet easy to deform. Speaking in a more mathematical way, pentamode metamaterials have an elasticity tensor with only one non-zero eigenvalue and five (penta) vanishing eigenvalues.

Pentamode structures have been proposed theoretically by Graeme Milton and Andrej Cherkaev in 1995 [22] but have not been fabricated until early 2012.[23] According to theory, pentamode metamaterials can be used as the building blocks for materials with completely arbitrary elastic properties.[22] Anisotropic versions of pentamode structures are a candidate for transformation elastodynamics and elastodynamic cloaking.

Cosserat and Micropolar Metamaterials

Very often Cauchy elasticity is sufficient to describe the effective behavior of mechanical metamaterials. When the unit cells of typical metamaterials are not centrosymmetric it has been shown that an effective description using chiral micropolar elasticity (or Cosserat [24]) was required.[25] Micropolar elasticity combines the coupling of translational and rotational degrees of freedom in the static case and shows an equivalent behavior to the optical activity.

Willis materials

In 2006 Milton, Briane and Willis[26] showed that the correct invariant form of linear elastodynamics is the local set of equations originally proposed by Willis in the late 1970s and early 1980s, to describe the elastodynamics of inhomogeneous materials.[27] This includes the apparently unusual (in elastic materials) coupling between stress, strain and velocity and also between momentum, strain and velocity. Invariance of Navier's equations can occur under the transformation theory, but would require materials with non-symmetric stress,[28][29] hence the interest in Cosserat materials noted above. An elastostatic cloak with polar material with a distribution of body torque that breaks the stress symmetry was fabricated and successfully tested. [30] The theory was given further foundations in the paper by Norris and Shuvalov.[31] A mathematical theory of near cloaking for linear elasticity has been developed based on these papers. [32]

Meta-tribomaterials

Meta-tribomaterials[33] [34] proposed in 2021 are a new class of multifunctional mechanical metamaterials with intrinsic sensing and energy harvesting functionalities. These material systems are composed of finely tailored and topologically different triboelectric microstructures. Meta-tribomaterials, a.k.a. self-aware composite mechanical metamaterials, can serve as nanogenerators and sensing media to directly collect information about its operating environment. They naturally inherit the enhanced mechanical properties offered by classical mechanical metamaterials. Under mechanical excitations, meta-tribomaterials generate electrical signals which can be used for active sensing and empowering sensors and embedded electronics.[33]

Electronic mechanical metamaterials

Electronic mechanical metamaterials[35] are active mechanical metamaterials with digital computing and information storage capabilities. They have built the foundation for a new scientific field of meta-mechanotronics (mechanical metamaterial electronics) proposed in 2023.[35] These material systems are an enhanced type of meta-tribomaterials created via integrating mechanical metamaterials, digital electronics and nano energy harvesting (e.g. triboelectric, piezoelectric, pyroelectric) technologies. They can sense the external stimuli, self-power and process the information to create an integrated closed-loop control system.  Electronic mechanical metamaterials can be designed as digital logic gates, i.e., AND, OR, XOR, NAND, NOR, and XNOR, or mechanically-responsive data storage devices. Thus, they can potentially lead to developing future mechanical metamaterial computers (MMCs), complementing traditional electronics with electronics made of mechanical metamaterials.[35] Such computing metamaterial systems can be particularly useful under extreme loads and harsh environments (e.g. high pressure, high/low temperature and radiation exposure) where traditional semiconductor electronics cannot maintain their designed logical functions.

Hyperelastic cloaking and invariance

Another mechanism to achieve non-symmetric stress is to employ pre-stressed hyperelastic materials and the theory of "small on large", i.e. elastic wave propagation through pre-stressed nonlinear media. Two papers written in the Proceedings of the Royal Society A in 2012 established this principal of so-called hyperelastic cloaking and invariance[36] [37] and have been employed in numerous ways since then in association with elastic wave cloaking and phononic media.

Structural Metamaterials

Material systems have been developed that effectively achieve theoretical upper bounds for specific stiffness and strength. [38][39] While theoretical composites that achieve the same upper bound have existed for some time,[40] they have been impractical to fabricate as they require features on multiple length scales.[41] Single length scale designs are amenable to additive manufacturing, where they can enable engineered systems that maximize lightweight stiffness, strength and energy absorption.

References

  1. ^ Surjadi, James Utama; et al. (4 January 2019). "Mechanical Metamaterials and Their Engineering Applications". Advanced Engineering Materials. 21 (3): 1800864. doi:10.1002/adem.201800864.
  2. ^ Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo (29 April 2009). "Acoustic metamaterial with negative modulus". Journal of Physics: Condensed Matter. 21 (17): 175704. arXiv:0812.2952. Bibcode:2009JPCM...21q5704L. doi:10.1088/0953-8984/21/17/175704. PMID 21825432. S2CID 26358086.
  3. ^ Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo (1 December 2009). "Acoustic metamaterial with negative density". Physics Letters A. 373 (48): 4464–4469. Bibcode:2009PhLA..373.4464L. doi:10.1016/j.physleta.2009.10.013.
  4. ^ Yang, Z.; Mei, Jun; Yang, Min; Chan, N.; Sheng, Ping (1 November 2008). "Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass" (PDF). Physical Review Letters. 101 (20): 204301. Bibcode:2008PhRvL.101t4301Y. doi:10.1103/PhysRevLett.101.204301. PMID 19113343. S2CID 714391.
  5. ^ Ding, Yiqun; Liu, Zhengyou; Qiu, Chunyin; Shi, Jing (August 2007). "Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density". Physical Review Letters. 99 (9): 093904. Bibcode:2007PhRvL..99i3904D. doi:10.1103/PhysRevLett.99.093904. PMID 17931008.
  6. ^ Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo (1 February 2010). "Composite Acoustic Medium with Simultaneously Negative Density and Modulus". Physical Review Letters. 104 (5): 054301. arXiv:0901.2772. Bibcode:2010PhRvL.104e4301L. doi:10.1103/PhysRevLett.104.054301. PMID 20366767. S2CID 119249065.
  7. ^ Zhu, J.; Christensen, J.; Jung, J.; Martin-Moreno, L.; Yin, X.; Fok, L.; Zhang, X.; Garcia-Vidal, F. J. (2011). "A holey-structured metamaterial for acoustic deep-subwavelength imaging". Nature Physics. 7 (1): 52–55. Bibcode:2011NatPh...7...52Z. doi:10.1038/nphys1804. hdl:10261/52201.
  8. ^ Li, Jensen; Fok, Lee; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang (2009). "Experimental demonstration of an acoustic magnifying hyperlens". Nature Materials. 8 (12): 931–934. Bibcode:2009NatMa...8..931L. doi:10.1038/nmat2561. PMID 19855382.
  9. ^ Christensen, Johan; de Abajo, F. (2012). "Anisotropic Metamaterials for Full Control of Acoustic Waves". Physical Review Letters. 108 (12): 124301. Bibcode:2012PhRvL.108l4301C. doi:10.1103/PhysRevLett.108.124301. hdl:10261/92293. PMID 22540586. S2CID 36710766.
  10. ^ Farhat, M.; Enoch, S.; Guenneau, S.; Movchan, A. (2008). "Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid". Physical Review Letters. 101 (13): 134501. Bibcode:2008PhRvL.101m4501F. doi:10.1103/PhysRevLett.101.134501. PMID 18851453.
  11. ^ Cummer, Steven A; Schurig, David (2007). "One path to acoustic cloaking". New Journal of Physics. 9 (3): 45. Bibcode:2007NJPh....9...45C. doi:10.1088/1367-2630/9/3/045.
  12. ^ Xu, B.; Arias, F.; Brittain, S. T.; Zhao, X.-M.; Grzybowski, B.; Torquato, S.; Whitesides, G. M. (1999). "Making Negative Poisson's Ratio Microstructures by Soft Lithography". Advanced Materials. 11 (14): 1186–1189. doi:10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K.
  13. ^ Bückmann, Tiemo; Stenger, Nicolas; Kadic, Muamer; Kaschke, Johannes; Frölich, Andreas; Kennerknecht, Tobias; Eberl, Christoph; Thiel, Michael; Wegener, Martin (22 May 2012). "Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography". Advanced Materials. 24 (20): 2710–2714. Bibcode:2012AdM....24.2710B. doi:10.1002/adma.201200584. PMID 22495906. S2CID 205244958.
  14. ^ Kolpakovs, A.G. (1985). "Determination of the average characteristics of elastic frameworks". Journal of Applied Mathematics and Mechanics. 49 (6): 739–745. Bibcode:1985JApMM..49..739K. doi:10.1016/0021-8928(85)90011-5.
  15. ^ Almgren, R.F. (1985). "An isotropic three-dimensional structure with Poisson's ratio=-1". Journal of Elasticity. 15 (4): 427–430. doi:10.1007/bf00042531. S2CID 123298026.
  16. ^ Schenk, Mark (2011). Folded Shell Structures, PhD Thesis (PDF). University of Cambridge, Clare College.
  17. ^ Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mahadevan, L. (2013-05-21). "Geometric Mechanics of Periodic Pleated Origami". Physical Review Letters. 110 (21): 215501. arXiv:1211.6396. Bibcode:2013PhRvL.110u5501W. doi:10.1103/PhysRevLett.110.215501. PMID 23745895. S2CID 9145953.
  18. ^ Eidini, Maryam; Paulino, Glaucio H. (2015). "Unraveling metamaterial properties in zigzag-base folded sheets". Science Advances. 1 (8): e1500224. arXiv:1502.05977. Bibcode:2015SciA....1E0224E. doi:10.1126/sciadv.1500224. ISSN 2375-2548. PMC 4643767. PMID 26601253.
  19. ^ Eidini, Maryam (2016). "Zigzag-base folded sheet cellular mechanical metamaterials". Extreme Mechanics Letters. 6: 96–102. arXiv:1509.08104. doi:10.1016/j.eml.2015.12.006. S2CID 118424595.
  20. ^ Nicolaou, Zachary G.; Motter, Adilson E. (2012). "Mechanical metamaterials with negative compressibility transitions". Nature Materials. 11 (7): 608–13. arXiv:1207.2185. Bibcode:2012NatMa..11..608N. doi:10.1038/nmat3331. PMID 22609557. S2CID 13390648.
  21. ^ Nicolaou, Zachary G.; Motter, Adilson E. (2013). "Longitudinal Inverted Compressibility in Super-strained Metamaterials". Journal of Statistical Physics. 151 (6): 1162–1174. arXiv:1304.0787. Bibcode:2013JSP...151.1162N. doi:10.1007/s10955-013-0742-8. S2CID 32700289.
  22. ^ a b Milton, Graeme W.; Cherkaev, Andrej V. (1 January 1995). "Which Elasticity Tensors are Realizable?". Journal of Engineering Materials and Technology. 117 (4): 483. doi:10.1115/1.2804743.
  23. ^ Kadic, Muamer; Bückmann, Tiemo; Stenger, Nicolas; Thiel, Michael; Wegener, Martin (1 January 2012). "On the practicability of pentamode mechanical metamaterials". Applied Physics Letters. 100 (19): 191901. arXiv:1203.1481. Bibcode:2012ApPhL.100s1901K. doi:10.1063/1.4709436. S2CID 54982039.
  24. ^ Rueger, Z.; Lakes, R. S. (8 February 2018). "Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice". Physical Review Letters. 120 (6): 065501. Bibcode:2018PhRvL.120f5501R. doi:10.1103/PhysRevLett.120.065501. PMID 29481282.
  25. ^ Frenzel, Tobias; Kadic, Muamer; Wegener, Martin (23 November 2017). "Three-dimensional mechanical metamaterials with a twist". Science. 358 (6366): 1072–1074. Bibcode:2017Sci...358.1072F. doi:10.1126/science.aao4640. PMID 29170236.
  26. ^ Graeme W Milton; Marc Briane; John R Willis (2006-10-24). "On cloaking for elasticity and physical equations with a transformation invariant form". New Journal of Physics. 8 (10): 248. Bibcode:2006NJPh....8..248M. doi:10.1088/1367-2630/8/10/248. ISSN 1367-2630.
  27. ^ Willis, J. R. (1981-01-01). "Variational principles for dynamic problems for inhomogeneous elastic media". Wave Motion. 3 (1): 1–11. Bibcode:1981WaMot...3....1W. doi:10.1016/0165-2125(81)90008-1. ISSN 0165-2125.
  28. ^ Brun Michele; Guenneau Sébastien; Movchan Alexander B. (2009-09-02). "Achieving control of in-plane elastic waves". Applied Physics Letters. 94 (6): 061903. arXiv:0812.0912. Bibcode:2009ApPhL..94f1903B. doi:10.1063/1.3068491. S2CID 17568906.
  29. ^ Diatta André; Guenneau Sébastien (2014-07-14). "Controlling solid elastic waves with spherical cloaks". Applied Physics Letters. 105 (2): 021901. arXiv:1403.1847. Bibcode:2014ApPhL.105b1901D. doi:10.1063/1.4887454. S2CID 55717144.
  30. ^ Xianchen Xu; Chen Wang; Wan Shou; Zongliang Du; Yangyang Chen; Beichen Li; Wojciech Matusik; Nassar Hussein; Guoliang Huang (2020-03-19). "Physical Realization of Elastic Cloaking with a Polar Material". Physical Review Letters. 124 (2): 114301. Bibcode:2020PhRvL.124k4301X. doi:10.1103/PhysRevLett.124.114301. hdl:1721.1/125580. PMID 32242717. S2CID 214735196.
  31. ^ Norris, A. N.; Shuvalov, A. L. (2011-09-01). "Elastic cloaking theory". Wave Motion. Special Issue on Cloaking of Wave Motion. 48 (6): 525–538. arXiv:1103.6045. Bibcode:2011WaMot..48..525N. doi:10.1016/j.wavemoti.2011.03.002. ISSN 0165-2125.
  32. ^ Craster Richard; Diatta André; Guenneau Sébastien; Hutridurga Harsha (2021). "On near-cloaking for linear elasticity". Multiscale Modeling & Simulation. 19 (2): 633. arXiv:1803.01360. doi:10.1137/20M1333201. hdl:10044/1/89472. S2CID 102351976.
  33. ^ a b Barri, Kaveh; Jiao, Pengcheng; Zhang, Qianyun; Chen, Jun; Wang, Zhong Lin; Alavi, Amir H. (2021-08-01). "Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing". Nano Energy. 86: 106074. doi:10.1016/j.nanoen.2021.106074. ISSN 2211-2855. PMC 8423374. PMID 34504740.
  34. ^ Alavi A.H., Barri K., “Self-aware composite mechanical metamaterials and method for making same”, U.S. Pat. No. US2022/0011176A1, 2022.
  35. ^ a b c Zhang, Qianyun; Barri, Kaveh; Jiao, Pengcheng; Lu, Wenyun; Luo, Jianzhe; Meng, Wenxuan; Wang, Jiajun; Hong, Luqin; Mueller, Jochen; Lin Wang, Zhong; Alavi, Amir H. (2023-05-01). "Meta-mechanotronics for self-powered computation". Materials Today. 65: 78–89. doi:10.1016/j.mattod.2023.03.026. ISSN 1369-7021. S2CID 258230710.
  36. ^ Parnell, William J. (2012-02-08). "Nonlinear pre-stress for cloaking from antiplane elastic waves". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 468 (2138): 563–580. arXiv:1203.3246. Bibcode:2012RSPSA.468..563P. doi:10.1098/rspa.2011.0477. S2CID 51681026.
  37. ^ Norris, A. N.; Parnell, W. J. (2012-10-08). "Hyperelastic cloaking theory: transformation elasticity with pre-stressed solids". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 468 (2146): 2881–2903. arXiv:1204.4655. Bibcode:2012RSPSA.468.2881N. doi:10.1098/rspa.2012.0123. S2CID 53619286.
  38. ^ Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M. (2017). "Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness". Nature. 543 (7646): 533–537. Bibcode:2017Natur.543..533B. doi:10.1038/nature21075. hdl:2164/9176. ISSN 0028-0836. PMID 28219078. S2CID 205253514.
  39. ^ Crook, Cameron; Bauer, Jens; Guell Izard, Anna; Santos de Oliveira, Cristine; Martins de Souza e Silva, Juliana; Berger, Jonathan B.; Valdevit, Lorenzo (2020-03-27). "Plate-nanolattices at the theoretical limit of stiffness and strength". Nature Communications. 11 (1): 1579. Bibcode:2020NatCo..11.1579C. doi:10.1038/s41467-020-15434-2. ISSN 2041-1723. PMC 7101344. PMID 32221283.
  40. ^ Milton, G. W. (2018). "Stiff competition". Nature. 564 (7734): E1. Bibcode:2018Natur.564E...1M. doi:10.1038/s41586-018-0724-8. ISSN 1476-4687. PMID 30518886.
  41. ^ Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M. (2018). "Berger et al. reply". Nature. 564 (7734): E2–E4. Bibcode:2018Natur.564E...2B. doi:10.1038/s41586-018-0725-7. ISSN 1476-4687. PMID 30518891.