User:Ahernandez6/sandbox

From WikiProjectMed
Jump to navigation Jump to search

Methods of inference

Angiosperm phylogeny of orders based on classification by the Angiosperm Phylogeny Group. The figure shows the number of inferred independent origins of C3-C4 photosynthesis and C4 photosynthesis in parentheses.

Phylogenetic reconstruction and ancestral state reconstruction proceed by assuming that evolution has occurred without convergence. Convergent patterns may, however, appear at higher levels in a phylogenetic reconstruction, and are sometimes explicitly sought by investigators. The methods applied to infer convergent evolution depend on whether pattern-based or process-based convergence is expected. Pattern-based convergence is the broader term, for when two or more lineages independently evolve patterns of similar traits. Process-based convergence is when the convergence is due to similar forces of natural selection.[1]

Pattern-based convergence measures

Earlier methods for measuring convergence incorporate ratios of phenotypic and phylogenetic distance by simulating evolution with a Brownian motion model of trait evolution along a phylogeny.[2][3] More recent methods also quantify the strength of convergence.[4] One drawback to keep in mind is that these methods can confuse long-term stasis with convergence due to phenotypic similarities. Stasis occurs when there is little evolutionary change among taxa.[1]

Distance-based measures assess the degree of similarity between lineages over time. Frequency-based measures assess the number of lineages that have evolved in a particular trait space.[1]

Process-based convergence measures

Methods to infer process-based convergence fit models of selection to a phylogeny and continuous trait data to determine whether the same selective forces have acted upon lineages. This uses the Ornstein-Uhlenbeck (OU) process to test different scenarios of selection. Other methods rely on an a priori specification of where shifts in selection have occurred. [5]

References

  1. ^ a b c Stayton, C. Tristan (2015). "The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence". Evolution. 69 (8): 2140–2153. doi:10.1111/evo.12729. ISSN 1558-5646.
  2. ^ Stayton, C. Tristan. "Is convergence surprising? An examination of the frequency of convergence in simulated datasets". Journal of Theoretical Biology. 252 (1): 1–14. doi:10.1016/j.jtbi.2008.01.008.
  3. ^ Muschick, Moritz; Indermaur, Adrian; Salzburger, Walter. "Convergent Evolution within an Adaptive Radiation of Cichlid Fishes". Current Biology. 22 (24): 2362–2368. doi:10.1016/j.cub.2012.10.048.
  4. ^ Arbuckle, Kevin; Bennett, Cheryl M.; Speed, Michael P. (2014-07-01). "A simple measure of the strength of convergent evolution". Methods in Ecology and Evolution. 5 (7): 685–693. doi:10.1111/2041-210X.12195.
  5. ^ Ingram, Travis; Mahler, D.Luke (2013-05-01). "SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion". Methods in Ecology and Evolution. 4 (5): 416–425. doi:10.1111/2041-210X.12034. ISSN 2041-210X.