Zinc cadmium phosphide arsenide

From WikiProjectMed
Jump to navigation Jump to search

Zinc cadmium phosphide arsenide (Zn-Cd-P-As) is a quaternary system of group II (IUPAC group 12) and group V (IUPAC group 15) elements. Many of the inorganic compounds in the system are II-V semiconductor materials. The quaternary system of II3V2 compounds, (Zn1−xCdx)3(P1−yAsy)2, has been shown to allow solid solution continuously over the whole compositional range.[1] This material system and its subsets have applications in electronics, optoelectronics, including photovoltaics, and thermoelectrics.[2]

List of all binary compounds

This system of elements contains numerous binary compounds and their solid solutions.

Stable at atmospheric pressure

The binary compounds thermodynamically stable at atmospheric pressure are listed in the following table:[1][3]

Anion 
Cation
P As
Zn
  • α″ (or α) and β[4]
  • α and β[4]
  • α, α′ and β[5]
  • one polymorph[5]
Cd
  • α, α′, α″ and β[3]
  • α and δ[3]

Metastable or unstable at atmospheric pressure

Compounds metastable or unstable at atmospheric pressure are the following:

Anion 
Cation
P As
Zn
  • ZnP2
  • ZnP4
  • Zn7P10
  • Zn3P2
  • Zn3As2
  • ZnAs
  • high-pressure phase
  • high-pressure phase, low and high-temperature polymorphs
Cd
  • Cd3P2
  • high-pressure phase
  • Cd3As2
  • CdAs
  • CdAs4
  • high-pressure phase
  • high-pressure phase, low and high-temperature polymorphs
  • [3]

Quaternary compounds

The compounds of the form II3V2 have similar crystalline structures and exhibit full solid solution over the whole compositional range. The compounds of the form II-V2 allow only partial solid solution.[3]

Ternary compounds

The binary compounds in this system form a wide range of solid solutions. This miscibility reflects the close similarity of the structures of the binary phases. The IIV2 compounds exhibit wide solid solution ranges with CdP4 even though the stoichiometry and structures of the components differ.[3]

The optoelectronic and band properties of some ternary compounds have also been studied. For example, the bandgap of Zn3(P1−yAsy)2 solid solutions is direct and tunable from 1.0 eV to 1.5 eV. This solubility enables the fabrication of tunable nanowire photodetectors.[8] The solid solution (Zn1−xCdx)3As2 exhibit a topological phase transition at x ~ 0.62.[9]

Notable binary compounds

Cadmium arsenide (Cd3As2)

Cadmium arsenide is a 3D Dirac semimetal exhibiting the Nernst effect.

Zinc phosphide (Zn3P2)

Zinc phosphide is a semiconductor material with a direct band gap of 1.5 eV[10] used in photovoltaics.[11] It is also used as a rodenticide in the pest control industry.

Zinc arsenide (Zn3As2)

Zinc arsenide is a semiconductor material with a band gap of 1.0 eV.[12]

References

  1. ^ a b Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. (2014). "Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics". Inorganic Materials. 50 (9): 868–873. doi:10.1134/S0020168514090143. S2CID 94409384.
  2. ^ Arushanov, E. K. (1992). "II3V2 compounds and alloys". Progress in Crystal Growth and Characterization of Materials. 25 (3): 131–201. doi:10.1016/0960-8974(92)90030-T.
  3. ^ a b c d e f Yakimovich, V. N.; Rubtsov, V. A.; Trukhan, V. M. (1996). "Phase equilibria in the Zn-P-As-Cd System". Inorganic Materials. 32 (7): 705–709.
  4. ^ a b Ghasemi, M.; Stutz, E. Z.; Escobar Steinvall, S.; Zamani, M.; Fontcuberta i Morral, A. (2019). "Thermodynamic re-assessment of the Zn–P binary system". Materialia. 6: 100301. doi:10.1016/j.mtla.2019.100301. S2CID 140792691.
  5. ^ a b Okamoto, H. (1992). "The As-Zn (Arsenic-Zinc) System". Journal of Phase Equilibria. 13 (2).
  6. ^ Berak, J.; Pruchnik, Z. (1971). "Phase Equilibria in the Zinc-Cadmium-Phosphorus System. Part III. The Cd3P2-Zn3P2 System". Roczniki Chemii. 45: 1425.
  7. ^ a b Schlesinger, Mark E. (2002). "The Thermodynamic Properties of Phosphorus and Solid Binary Phosphides". Chemical Reviews. 102 (11): 4267–4302. doi:10.1021/cr000039m. PMID 12428990.
  8. ^ Im, H. S.; Park, K.; Jang, D. M.; Jung, C. S.; Park, J.; Yoo, S. J.; Kim, J. G. (2015). "Zn3P2-Zn3As2 solid solution nanowires". Nano Letters. 15 (2): 990–997. Bibcode:2015NanoL..15..990I. doi:10.1021/nl5037897. PMID 25602167.
  9. ^ Lu, H.; Zhang, X.; Bian, Y.; Jia, S. (2017). "Topological Phase Transition in Single Crystals of (Cd1−xZnx)3As2". Scientific Reports. 7 (1): 3148. arXiv:1507.07169. Bibcode:2017NatSR...7.3148L. doi:10.1038/s41598-017-03559-2. PMC 5466615. PMID 28600553.
  10. ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. (2009). "Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2" (PDF). Applied Physics Letters. 95 (11): 112103. Bibcode:2009ApPhL..95k2103K. doi:10.1063/1.3225151. ISSN 0003-6951.
  11. ^ Bhushan, M.; Catalano, A. (1981). "Polycrystalline Zn3P2 Schottky barrier solar cells". Applied Physics Letters. 38 (1): 39–41. Bibcode:1981ApPhL..38...39B. doi:10.1063/1.92124.
  12. ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. (1999). "Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2". Journal of Applied Physics. 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569.

External links