Sulfite reductase

From WikiProjectMed
Jump to navigation Jump to search
sulfite reductase
Crystallographic structure of sulfite reductase from E. coli.[1]
Identifiers
EC no.1.8.99.1
CAS no.37256-51-2
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

Sulfite reductases (EC 1.8.99.1) are enzymes that participate in sulfur metabolism.[2] They catalyze the reduction of sulfite to hydrogen sulfide and water.[2][3] Electrons for the reaction are provided by a dissociable molecule of either NADPH, bound flavins, or ferredoxins.[4]

SO32− (sulfite) + electron donor H2S (hydrogen sulfide) + oxidized donor + 3 H2O

Sulfite reductases, which belong to the oxidoreductase family, are found in archaea, bacteria, fungi, and plants.[5][6][7] They are grouped as either assimilatory or dissimilatory sulfite reductases depending on their function, their spectroscopic properties, and their catalytic properties. This enzyme participates in selenoamino acid metabolism and sulfur assimilation. It employs two covalently coupled cofactors - an iron sulfur cluster and a siroheme - which deliver electrons to the substrate via this coupling.[8]

The systematic name of this enzyme class is hydrogen-sulfide:acceptor oxidoreductase. Other names in common use include assimilatory sulfite reductase, assimilatory-type sulfite reductase, and hydrogen-sulfide:(acceptor) oxidoreductase.

References

  1. ^ PDB: 1AOP​; Crane BR, Siegel LM, Getzoff ED (October 1995). "Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions". Science. 270 (5233): 59–67. Bibcode:1995Sci...270...59C. doi:10.1126/science.270.5233.59. PMID 7569952. S2CID 31246227.
  2. ^ a b Parey K, Warkentin E, Kroneck PM, Ermler U (October 2010). "Reaction cycle of the dissimilatory sulfite reductase from Archaeoglobus fulgidus". Biochemistry. 49 (41): 8912–21. doi:10.1021/bi100781f. PMID 20822098.
  3. ^ Pinto R, Harrison JS, Hsu T, Jacobs WR, Leyh TS (September 2007). "Sulfite reduction in mycobacteria". Journal of Bacteriology. 189 (18): 6714–22. doi:10.1128/JB.00487-07. PMC 2045171. PMID 17644602.
  4. ^ Siegel LM, Murphy MJ, Kamin H (January 1973). "Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups". The Journal of Biological Chemistry. 248 (1): 251–64. doi:10.1016/S0021-9258(19)44469-4. PMID 4144254.
  5. ^ Brychkova G, Yarmolinsky D, Ventura Y, Sagi M (August 2012). "A novel in-gel assay and an improved kinetic assay for determining in vitro sulfite reductase activity in plants". Plant & Cell Physiology. 53 (8): 1507–16. doi:10.1093/pcp/pcs084. PMID 22685081.
  6. ^ Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, Eppel A, Fluhr R, Sagi M (August 2014). "Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants". Plant Physiology. 165 (4): 1505–1520. doi:10.1104/pp.114.241356. PMC 4119034. PMID 24987017.
  7. ^ Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G (July 2005). "Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active site". The Journal of Biological Chemistry. 280 (29): 27319–28. doi:10.1074/jbc.M502560200. PMID 15917234.
  8. ^ Crane BR, Getzoff ED (December 1996). "The relationship between structure and function for the sulfite reductases". Current Opinion in Structural Biology. 6 (6): 744–56. doi:10.1016/S0959-440X(96)80003-0. PMID 8994874.

Further reading