Sudden sensorineural hearing loss

From WikiProjectMed
Jump to navigation Jump to search
Sudden sensorineural hearing loss
PMC4658668 mao-36-1622-g002.jpg
Brain regions where there were significant reductions in the gray matter volume in right-side unilateral sudden sensorineural hearing loss individuals relative to healthy controls
SpecialtyOtorhinolaryngology
FrequencyLua error in Module:PrevalenceData at line 5: attempt to index field 'wikibase' (a nil value).

Sudden sensorineural hearing loss (SSHL or SSNHL), commonly known as sudden deafness, occurs as an unexplained, rapid loss of hearing—usually in one ear—either at once or over several days. Nine out of ten people with SSHL lose hearing in only one ear. It should be considered a medical emergency. Delaying diagnosis and treatment may render treatment less effective or ineffective.

Experts estimate that SSHL strikes one person per 100 every year, typically adults in their 40s and 50s. The actual number of new cases of SSHL each year could be much higher because the condition often goes undiagnosed.

Signs and symptoms

Many people notice that they have SSHL when they wake up in the morning. Others first notice it when they try to use the deafened ear, such as when they use a phone. Still others notice a loud, alarming "pop" just before their hearing disappears. People with sudden deafness often become dizzy, have ringing in their ears (tinnitus), or both.

Causes

Only 10 to 15 percent of the cases diagnosed as SSHL have an identifiable cause. Most cases are classified as idiopathic, also called sudden idiopathic hearing loss (SIHL) and idiopathic sudden sensorineural hearing loss (ISSHL or ISSNHL)[1][2] The majority of evidence points to some type of inflammation in the inner ear as the most common cause of SSNHL.

  • Infection is believed to be the most common cause of SSNHL, accounting for approximately 13% of cases. Viruses that have been associated with SSNHL include cytomegalovirus, rubella, measles, mumps, human immunodeficiency virus (HIV), herpes simplex virus (HSV), varicella zoster virus (VZV), and West Nile virus.[3] Patients with COVID-19 may also be at increased risk for developing SSNHL.[4]
  • Vascular ischemia of the inner ear or cranial nerve VIII (CN8)
  • Perilymph fistula, usually due to a rupture of the round or oval windows and the leakage of perilymph. The patient will usually also experience vertigo or imbalance. A history of trauma is usually present and changes to hearing or vertigo occur with alteration in intracranial pressure such as with straining; lifting, blowing etc.
  • Autoimmune – can be due to an autoimmune illness such as systemic lupus erythematosus, granulomatosis with polyangiitis

Diagnosis

SSHL is diagnosed via pure tone audiometry. If the test shows a loss of at least 30 dB in three adjacent frequencies, the hearing loss is diagnosed as SSHL. For example, a hearing loss of 30 dB would make conversational speech sound more like a whisper.

Treatment

Hearing loss completely recovers in around 35-39% of patients with SSNHL, usually within one to two weeks from onset.[5] Eighty-five percent of those who receive treatment from an otolaryngologist (sometimes called an ENT surgeon) will recover some of their hearing.

  • vitamins and antioxidants
  • vasodilators
  • betahistine (Betaserc), an anti-vertigo drug
  • hyperbaric oxygen[6]
  • rheologic agents that reduce blood viscosity (such as hydroxyethyl starch, dextran and pentoxifylline)[7]
  • anti-inflammatory agents, primarily oral corticosteroids (such as prednisone and dexamethasone)[8]
  • Intratympanic administration – Gel formulations are under investigation to provide more consistent drug delivery to the inner ear.[9] Local drug delivery can be accomplished through intratympanic administration, a minimally invasive procedure where the ear drum is anesthetized and a drug is administered into the middle ear. From the middle ear, a drug can diffuse across the round window membrane into the inner ear.[9] Intratympanic administration of steroids may be effective for sudden sensorineural hearing loss for some patients, but high quality clinical data has not been generated.[10] Intratympanic administration of an anti-apoptotic peptide (JNK inhibitor) is currently being evaluated in late-stage clinical development.[11]

Epidemiology

General hearing loss affects close to 10% of the global population.[12] In the United States alone, it is expected that 13.5 million Americans have sensorineural hearing loss. Of those with sensorineural hearing loss, approximately 50% are congenitally related. The other 50% are due to maternal or fetal infections, post-natal infections, viral infections due to rubella or cytomegalovirus, ototoxic drugs,[13] exposure to loud sounds, severe head trauma, and premature births [14]

Of the genetically related sensorineural hearing loss cases, 75% are autosomal recessive, 15-20% autosomal dominant, and 1-3% sex-linked. While the specific gene and protein is still unknown, mutations in the connexin 26 gene near the DFNB1 locus of chromosome 13[15] are thought to account for most of the autosomal recessive genetic-related sensorineural hearing loss [14]

At least 8.5 per 1000 children younger than age 18 have sensorineural hearing loss. General hearing loss is proportionally related to age. At least 314 per 1000 people older than age 65 have hearing loss. Several risk factors for sensorineural hearing loss have been studied over the past decade. Osteoporosis, stapedectomy surgery, pneumococcal vaccinations, mobile phone users, and hyperbilirubinemia at birth are among some of the known risk factors.

References

  1. "Sudden Deafness | Massachusetts Eye and Ear". Masseyeandear.org. Archived from the original on 2016-03-10. Retrieved 2016-02-25.
  2. "H91.2". ICD-10 Version:2010. apps.who.int. 2010. Archived from the original on 2014-11-02. Retrieved 2023-10-01.
  3. Son HJ, Choi EJ, Jeong U, Choi YJ (April 2023). "Effect of Herpes Zoster Treatment and Sudden Sensorineural Hearing Loss Using National Health Insurance Claims Data of South Korea". Medicina. 59 (4): 808. doi:10.3390/medicina59040808. PMID 37109766.
  4. Meng X, Wang J, Sun J, Zhu K (April 2022). "COVID-19 and Sudden Sensorineural Hearing Loss: A Systematic Review". Frontiers in Neurology. 13: 883749. doi:10.3389/fneur.2022.883749. PMC 9096262. PMID 35572936.
  5. Bayoumy, AB; van der Veen, EL; de Ru, JA (1 August 2018). "Assessment of Spontaneous Recovery Rates in Patients With Idiopathic Sudden Sensorineural Hearing Loss". JAMA Otolaryngology–Head & Neck Surgery. 144 (8): 655–656. doi:10.1001/jamaoto.2018.1072. PMID 29931029. S2CID 49330911.
  6. Bennett MH, Kertesz T, Perleth M, Yeung P, Lehm JP (October 2012). "Hyperbaric oxygen for idiopathic sudden sensorineural hearing loss and tinnitus". The Cochrane Database of Systematic Reviews. 10: CD004739. doi:10.1002/14651858.CD004739.pub4. PMID 23076907.
  7. Li, Yike (15 June 2017). "Interventions in the management of blood viscosity for idiopathic sudden sensorineural hearing loss: A meta-analysis". Journal of Health Research and Reviews. 4 (2): 50–61. doi:10.4103/jhrr.jhrr_125_16. S2CID 79662388.
  8. Leung MA, Flaherty A, Zhang JA, Hara J, Barber W, Burgess L (June 2016). "Sudden Sensorineural Hearing Loss: Primary Care Update". Hawai'i Journal of Medicine & Public Health. 75 (6): 172–4. PMC 4928516. PMID 27413627.
  9. 9.0 9.1 McCall AA, Swan EE, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ (April 2010). "Drug delivery for treatment of inner ear disease: current state of knowledge". Ear and Hearing. 31 (2): 156–65. doi:10.1097/AUD.0b013e3181c351f2. PMC 2836414. PMID 19952751.
  10. Crane RA, Camilon M, Nguyen S, Meyer TA (January 2015). "Steroids for treatment of sudden sensorineural hearing loss: a meta-analysis of randomized controlled trials". The Laryngoscope. 125 (1): 209–17. doi:10.1002/lary.24834. PMID 25045896. S2CID 24312659.
  11. Suckfuell M, Lisowska G, Domka W, Kabacinska A, Morawski K, Bodlaj R, Klimak P, Kostrica R, Meyer T (September 2014). "Efficacy and safety of AM-111 in the treatment of acute sensorineural hearing loss: a double-blind, randomized, placebo-controlled phase II study". Otology & Neurotology. 35 (8): 1317–26. doi:10.1097/mao.0000000000000466. PMID 24979398. S2CID 6445497.
  12. Oishi, Naoki; Schacht, Jochen (2011). "Emerging treatments for noise-induced hearing loss". Expert Opinion on Emerging Drugs. 16 (2): 235–245. doi:10.1517/14728214.2011.552427. ISSN 1472-8214. PMC 3102156. PMID 21247358.
  13. "Genetic Sensorineural Hearing Loss: Background, Pathophysiology, Epidemiology". 2019-11-09. Archived from the original on 2023-06-29. Retrieved 2023-10-01. {{cite journal}}: Cite journal requires |journal= (help)
  14. 14.0 14.1 Antonio, Stephanie (2018-06-12). "Genetic Sensorineural Hearing Loss Clinical Presentation". Medscape. Archived from the original on 2023-02-07. Retrieved 2023-10-01.
  15. "Welcome to the Hereditary Hearing Loss Homepage | Hereditary Hearing Loss Homepage". hereditaryhearingloss.org. Archived from the original on 2019-10-24. Retrieved 2019-12-03.