Phosphate sulfate

From WikiProjectMed
Jump to navigation Jump to search

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

Some hydrogen phosphate sulfates are superprotonic conductors.

List

chem mw crystal system space group unit cell volume density comment references
Sanjuanite Al2(PO4)(SO4)(OH)·9H2O [1]
Hotsonite Al11(SO4)3(PO4)2(OH)21 · 16H2O triclinic a=11.23, b=11.66 c=10.55 α=112° 32′, β=107° 32′ γ=64° 27′ refract: α = 1.519 γ = 1.521 [2]
Arangasite Al2F(PO4)(SO4)·9H2O monoclinic P2/a a = 7.073, b = 9.634, c = 10.827, β = 100.40°, Z = 2 725.7 [3]
peisleyite Na3Al16(SO4)2(PO4)10(OH)17 · 20H2O monoclinic a 13.31, b 12.62, c 23.15, β 110.0°, Z = 2 discredited [4]
peisleyite Na2Al9[(P,S)O4]8(OH)6·28H2O triclinic P1 a = 9.28, b = 11.98, c = 13.25, α = 91.3, β = 75.6, γ = 67.67°, Z = 4 1308 [5]
Woodhouseite CaAl3(PO4)(SO4)(OH)6 trigonal R3m a = 6.993, c = 16.386 693.95 3.0 Uniaxial (+) nω = 1.636 nε = 1.647 Birefringence: δ = 0.011 [6]
Ardéalite Ca2H(PO4)(SO4)•4H2O monoclinic a = 5.721, b = 30.95, c = 6.265, β= 117.26° Z = 4 986.11 2.32 [7]
Destinezite Diadochite Fe2(PO4)(SO4)(OH)•6H2O triclinic P1 a = 9.570, b = 9.716, c = 7.313, α = 98.74°, β = 107.90°, γ = 63.86° Z = 2 [8]
bohuslavite FeIII4(PO4)3(SO4)(OH)(H2O)10·nH2O (5 ≤ n ≤ 14) triclinic P1 a = 13.376 b = 13.338 c = 10.863 α = 92.80, β = 91.03, γ = 119.92°, Z = 2 1675.7 pink [9]
Borickyite (Ca,Mg)(Fe3+,Al)4(PO4,SO4,CO3)(OH)8·3–7.5H2O [10]
Camaronesite [Fe3+(H2O)2(PO3OH)]2(SO4)·1–2H2O trigonal R32 a = 9.0833, c = 42.944, Z = 9 3068.5 [11]
Fe3+4(PO4)3(SO4)(OH)·18H2O triclinic P1 a=13.376, b 13.338, c 10.863, α 92.80, β 91.03, γ 119.92° 1675.7 [12]
vanderheydenite Zn6(PO4)2(SO4)(OH)4·7H2O monoclinic P21/n a = 6.204 b = 19.619, c = 7.782, β = 90.67° 947.1 biaxial (–) α = 1.565, β = 1.580 γ = 1.582. 2V = 39.8° [13]
Svanbergite SrAl3(PO4)(SO4)(OH)6 trigonal R3m a = 6.97, c = 16.59 Z=3 697.98 3.2 Uniaxial (+) nω = 1.631 - 1.635 nε = 1.646 - 1.649 Birefringence: δ = 0.015 [14]
Birchite Cd2Cu2(PO4)2(SO4) ·5H2O a = 10.489 b = 20.901 c = 6.155 Z=4 1349.6 3.647 biaxial positive,

nα = 1.624, nβ = 1.636, nγ = 1.669, 2Vcalc = +63°.

[15]
Corkite PbFe3(OH)6SO4PO4 trigonal R3m a = 7.32, c = 17.02 Z=3 781.2 4.295 Uniaxial (-) nω = 1.930 nε = 1.930 n = 1.93 - 1.96 Birefringence 0.03 [16]
BaAl3(PO4)(SO4)(OH)6 trigonal R3m a = , c = Z=3 [17]
hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6 [18]
Tsumebite Pb2Cu(PO4,SO4)(OH) [19]
Delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O [20]
Rossiantonite Al3(PO4)(SO4)2(OH)2(H2O)10·4H2O triclinic P1 a = 10.3410, b = 10.9600, c = 11.1446, α = 86.985, β = 65.727, γ = 75.064°, Z = 2 1110.5 [21]
Schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6 [22]
Arthurite Cu(Fe3+)2(AsO4,PO4,SO4)2(O,OH)2·4(H2O) [23]
cobaltarthurite [23]
Phosphoinnelite Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3 triclinic P1? a = 5.38, b = 7.10, c = 14.76; α = 99.00°, β = 94.94°, γ = 90.14° Z = 1 555 3.82 biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V 90° [24]
Francolite (Ca, Mg, Sr, Na)10(PO4, SO4, CO3)6F2–3 [25]
Al4(UO2)2(PO4)4(SO4)(OH)2 · 18H2O [26]
Al4(UO2)2(PO4)4(SO4)(OH)2 · 20H2O [26]
Coconinoite Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O monoclinic C2/c a =12.45, b = 12.96, c = 17.22, β = 105.7° [26]
xiangjiangite Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 22H2O tetragonal a = 7.17 Å, b = 7.17 Å, c = 22.22 Å Z=1 1,142 Biaxial (-) nα = 1.558 nβ = 1.576 nγ = 1.593 2V: 87° [27]

Artificial

chem mw crystal system space group unit cell Å volume density comment references
[H4N+]2·HSO4·H2PO4 [28][29]
NH4(HSO4)0.45(H2PO4)0.55 orthorhombic [30]
18-crown[6]·[NH4][H2PO4]0.5[HSO4]0.5·H2O orthrhombic F2dd a=8.710 b= 28.868 c=31.206 Z=16 7846 1.346 dehydrate at 70° [31]
[(C2H5)4N+]2·HSO4·H2PO4 Monoclinic C2/c a = 28.0787 b = 11.8671 c = 14.1533 β = 100.739° Z=8 4633.46 1.303 colourless; decompose at 353K [32]
(NH2CH2COOH)3(H2SO4)0.7(H3PO4)0.3 monoclinic called TGSP; colourless; ferroelectric, curie point 51 °C; pyroelectric
Na(HSO4)(H3PO4) monoclinic P 21 a = 5.449, b = 6.832, c = 8.718, β = 95.88°, Z = 2  322.8 [33]
K2(HSO4)(H2PO4) monoclinic P 21/c a = 11.150, b = 7.371, c = 9.436, β = 92.29°, Z = 4  774.9 [33]
K4(HSO4)3(H2PO4) triclinic P 1 a = 7.217, b = 7.521, c = 7.574, α = 71.52°, β = 88.28°, γ = 86.20°, Z = 1  389.1 [33]
K4(PO2F2)2(S2O7) 534.46 monoclinic C2/c a = 13.00, b = 7.543, c = 19.01, β = 130.07°, Z = 4 1426.5 2.489 colourless; pyrosulfate + difluorophosphate [34]
K3[O3SOPO2OSO3] [35]
H1−xTi2(PO4)3−x(SO4)x (x=0.5–1) [36]
Na2MgTi(SO4)(PO4)2 trigonal R3c a=8.4796 c=21.8091 Z=6 1358.1 2.818 [37]
K2MgTi(SO4)(PO4)2 cubic P213 a=9.8743 Z=4 962.84 2.872 [37]
Ca10-xNax(PO4)6-x(SO4)xF2 monoclinic [38]
NaFe2(PO4)(SO4)2 hexagonal R3c a=8.4243 c=21.973 [39]
NaFe1.4V0.6(PO4)(SO4)2 [40]
[Ni(C14H10N4)3]4(PO4)2(SO4) (C14H10N4=2,2'-bi-1H-benzimidazole) 3331.96 cubic I43d a = 24.964 Z=4 15558 1.423 green [41]
Rb2(HSO4)(H2PO4) monoclinic P21/n a=7.448, b=7.552, c=7.632, β=100.47°, Z=2 422.1 [42][43]
Rb2(HSO4)(H2PO4) monoclinic P21/c a=11.555, b=7.536, c=9.593, β=91.56, Z=4 853.0 at 160K [43]
Rb4(HSO4)3(H2PO4) orthorhombic P21212 a=7.612, b=14.795, c=7.446, Z=2 838.6 [42][43]
18-crown[6]·Rb[H2PO4]0.5[HSO4]0.5·3H2O monoclinic C2/c a=19.802 b=8.447 c=25.777 β=101.00° Z=8 4232 1.572 dehydrate at 70° [31]
Rb2MgTi(SO4)(PO4)2 [37]
Sr4(PO4)2SO4 [44]
NaZrMg(PO4)(SO4)2 hexagonal R3c [45]
NaZrCo(PO4)(SO4)2 hexagonal R3c [45]
NaZrNi(PO4)(SO4)2 hexagonal R3c [45]
NaZrCu(PO4)(SO4)2 hexagonal R3c [45]
NaZrZn(PO4)(SO4)2 hexagonal R3c [45]
NaZrAl(PO4)2(SO4) hexagonal R3c [45]
NaZrFe(PO4)2(SO4) hexagonal R3c [45]
H3OSb2(SO4)2(PO4) triclinic P1 a=5.134 b=7.908 c=12.855, α=81.401° β=87.253° γ=86.49° [46]
KSb2(SO4)2(PO4) triclinic P1 a=5.1453 =7.9149 c=12.6146, α=82.054° β=87.715° γ=86.655° [46]
RbSb2(SO4)2(PO4) triclinic P1 a=5.1531 b=7.957 c=12.845, α=81.801° β=87.676° γ=86.703° [46]
Cs2(HSO4)(H2PO4) cubic ao=4.926 >105 °C but can be supercooled [47]
Cs2(HSO4)(H2PO4) monoclinic P21/n a = 7.856 b = 7.732 c = 7.827, β= 99.92° Z=2 468.3 3.261 can substitute 2.3% ammonium; proton conductivity at 110 °C is 3×10−3 Ω−1cm−1 [48][49]
Cs3(HSO4)2(H2PO4) monoclinic C2/c a=19.824 b=7.859 c=19.047 β=100.20° Z=4 1387.2 3.302 stable against water solution 298-313K; phase transition at 411K [50]
Cs4(HSO4)3(H2PO4) monoclinic C2/c a=19.945 b=7.8565 c=8.9949 β=100.119° Z=3 1387.5 3.301 colourless [51][52]
Cs5(HSO4)2(H2PO4)3 cubic I43d a=14.5668 over 381K goes to tetragonal a=4.965 c=5.016 [53]
Cs6H(HSO4)3(H2PO4)4 cubic I43d a=14.4758 3033.38 3.236 colourless [54]
Cs5(HSO4)3(H2PO4)2 monoclinic C2/c a=34.07 Å,b=7.661,c=9.158,β=90.44° 2390 3.198 [55]
18-crown[6]·Cs[H2PO4]0.5[HSO4]0.5·3H2O monoclinic C2/c a=19.840 b=8.460 c=26.19 β=101.14 Z=8 4313 1.689 dehydrate at 70° [31]
CsNH4(HSO4)(H2PO4) [56]
Cs3NH4(HSO4)3(H2PO4) [56]
Cs2MgTi(SO4)(PO4)2 [37]
Ba4(PO4)2SO4 [44]
NaBa6Zr(PO4)5SO4 cubic I43d a = 10.5449 Z=4 1172.54 eulytite mineral structure [44]
Ba2Sr2(PO4)2SO4 [44]
Ba3Sr(PO4)2SO4 [44]
Ce2O(HPO4)2(SO4). 4H2O CeIV [57]
Ce2O(HPO4)2.4(SO4)0.6. 2H2O CeIII [58]
[enH2]0.5[CeIII(PO4)(HSO4)(OH2)] monoclinic P21/a a=12.999 b=7.150 c=9.212 β=95.33 cream colour [59]
KSr2Eu(PO4)2SO4 [44]
RbSr2Eu(PO4)2SO4 [44]
CsSr2Eu(PO4)2SO4 [44]
[enH2]0.5[Ho(HPO4)(SO4)(H2O)] monoclinic P21/a a = 12.938 b = 6.834 c = 9.100 β = 88.12° [60]
Pb2Mg2(PO4)2SO4 [44]
MgPb3(PO4)2(SO4) cubic I43d a = 10.299 Z=4 1092.4 5.67 [61]
CaPb3(PO4)2(SO4) cubic I43d a = 10.296 Z=4 1091.5 5.77 [61]
MnPb3(PO4)2(SO4) cubic I43d a = 10.258 Z=4 1079.4 5.92 [61]
CoPb3(PO4)2(SO4) cubic I43d a = 10.356 Z=4 1110.6 5.78 [61]
NiPb3(PO4)2(SO4) cubic I43d a = 10.434 Z=4 1135.9 5.65 [61]
CuPb3(PO4)2(SO4) cubic I43d a = 10.422 Z=4 1132.0 5.70 [61]
ZnPb3(PO4)2(SO4) cubic I43d a = 10.449 Z=4 1140.8 5.67 [61]
CdPb3(PO4)2(SO4) cubic I43d a = 10.315 Z=4 1097.5 6.17 [61]
SrPb3(PO4)2(SO4) cubic I43d a = 10.369 Z=4 1114.8 5.93 [61]
Th2(PO4)2SO4·2 H2O decompose 450 °C [62]

Organic derivatives

A catenated sulfophosphate has the sulfur and phosphorus joined by an oxygen atom. In biochemistry, metabolism of sulfate may use such a group, for example with adenosine-5'-phosphosulfate.[63]

References

  1. ^ Frost, Ray L.; Palmer, Sara J. (September 2011). "A vibrational spectroscopic study of the mixed anion mineral sanjuanite Al2(PO4)(SO4)(OH)·9H2O" (PDF). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79 (5): 1210–1214. Bibcode:2011AcSpA..79.1210F. doi:10.1016/j.saa.2011.04.044. PMID 21646042.
  2. ^ Beukes, Gerhard J.; Schoch, Aylva E.; Van der Westhuizen, Willem A.; Bok, Louis D. C.; Bruiyn, Hendrik (1984-10-01). "Hotsonite, a new hydrated aluminum-phosphate-sulphate from Pofadder, South Africa". American Mineralogist. 69 (9–10): 979–983. ISSN 0003-004X.
  3. ^ Yakubovich, O. V.; Steele, I. M.; Chernyshev, V. V.; Zayakina, N. V.; Gamyanin, G. N.; Karimova, O. V. (August 2014). "The crystal structure of arangasite, Al 2 F(PO 4 )(SO 4 )·9H 2 O determined using low-temperature synchrotron data". Mineralogical Magazine. 78 (4): 889–903. Bibcode:2014MinM...78..889Y. doi:10.1180/minmag.2014.078.4.09. ISSN 0026-461X. S2CID 94078023.
  4. ^ Pilkington, E. S.; Segnit, E. R.; Watts, J. A. (December 1982). "Peisleyite, a new sodium aluminium sulphate phosphate". Mineralogical Magazine. 46 (341): 449–452. Bibcode:1982MinM...46..449P. doi:10.1180/minmag.1982.046.341.07. ISSN 0026-461X. S2CID 129726668.
  5. ^ Mills, S. J.; Ma, C.; Birch, W. D. (December 2011). "A contribution to understanding the complex nature of peisleyite". Mineralogical Magazine. 75 (6): 2733–2737. Bibcode:2011MinM...75.2733M. doi:10.1180/minmag.2011.075.6.2733. ISSN 0026-461X. S2CID 18661193.
  6. ^ "Woodhouseite". www.mindat.org. Retrieved 2022-05-25.
  7. ^ BALENZANO, F; DELL'ANNA, L.; DI PIERRO, M.; FIORE, S. (1982). "Ardealite, Ca2H(PO4) (SO4).4H2O, un rarissimo fosfato-solfato idrato di calcio: risultati mineralogici preliminari". Ardealite, Ca2H(PO4) (SO4).4H2O, Un Rarissimo Fosfato-solfato Idrato di Calcio: Risultati Mineralogici Preliminari. 38 (2): 899–900. ISSN 0037-8828.
  8. ^ Peacor, Donald R. (1999). "Destinezite ("Diadochite"), Fe2(PO4)(SO4)(OH)·6H2O: Its Crystal Structure and Role as a Soil Mineral at Alum Cave Bluff, Tennessee†". Clays and Clay Minerals. 47 (1): 1–11. Bibcode:1999CCM....47....1P. doi:10.1346/CCMN.1999.0470101. ISSN 0009-8604. S2CID 98406559.
  9. ^ Mauro, Daniela; Biagioni, Cristian; Bonaccorsi, Elena; Hålenius, Ulf; Pasero, Marco; Skogby, Henrik; Zaccarini, Federica; Sejkora, Jiří; Plášil, Jakub; Kampf, Anthony R.; Filip, Jan (2019-12-20). "Bohuslavite, Fe 4 3 + (PO4)3(SO4)(OH)(H2O)10·nH2O, a new hydrated iron phosphate-sulfate". European Journal of Mineralogy. 31 (5–6): 1033–1046. Bibcode:2019EJMin..31.1033M. doi:10.1127/ejm/2019/0031-2892. ISSN 0935-1221. S2CID 213555293.
  10. ^ Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (June 2012). "Is the mineral borickyite (Ca,Mg)(Fe3+,Al)4(PO4,SO4,CO3)(OH)8·3–7.5H2O the same as delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O?". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 92: 377–381. Bibcode:2012AcSpA..92..377F. doi:10.1016/j.saa.2012.02.102. PMID 22446787.
  11. ^ Kampf, A. R.; Mills, S. J.; Nash, B. P.; Housley, R. M.; Rossman, G. R.; Dini, M. (June 2013). "Camaronesite, [Fe 3+ (H 2 O) 2 (PO 3 OH)] 2 (SO 4 )·1–2H 2 O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite". Mineralogical Magazine. 77 (4): 453–465. Bibcode:2013MinM...77..453K. doi:10.1180/minmag.2013.077.4.05. ISSN 0026-461X. S2CID 129777006.
  12. ^ Mauro, D.; Biagioni, C.; Bonaccorsi, E.; Pasero, M.; Skogby, H.; Zaccarini, F. (2018). "A new iron (III) phosphate-sulfate from Apuan Alps (Tuscany, Italy): a difficult puzzle solved through a multi-technique approach". Congresso Sgi-Simp 2018: 521.
  13. ^ Elliott, Peter; Kolitsch, Uwe (2018-10-31). "Description and crystal structure of vanderheydenite, Zn6(PO4)2(SO4)(OH)4·7H2O, a new mineral from Broken Hill, New South Wales, Australia". European Journal of Mineralogy. 30 (4): 835–840. Bibcode:2018EJMin..30..835E. doi:10.1127/ejm/2018/0030-2750. ISSN 0935-1221. S2CID 134655965.
  14. ^ "Svanbergite". www.mindat.org. Retrieved 2022-05-25.
  15. ^ Elliott, P.; Brugger, J.; Pring, A.; Cole, M. L.; Willis, A. C.; Kolitsch, U. (2008-05-01). "Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement". American Mineralogist. 93 (5–6): 910–917. Bibcode:2008AmMin..93..910E. doi:10.2138/am.2008.2732. ISSN 0003-004X. S2CID 95773593.
  16. ^ "Corkite". www.mindat.org. Retrieved 2022-05-25.
  17. ^ Izbrodin, Ivan A.; Ripp, German S.; Doroshkevich, Anna G. (January 2011). "Aluminium phosphate and phosphate-sulphate minerals in kyanite schists of the Ichetuyskoye area, West Transbaikalia, Russia: crystal chemistry and evolution". Mineralogy and Petrology. 101 (1–2): 81–96. Bibcode:2011MinPe.101...81I. doi:10.1007/s00710-010-0135-5. ISSN 0930-0708. S2CID 129698260.
  18. ^ Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (August 2011). "A vibrational spectroscopic study of the mineral hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6". Journal of Molecular Structure. 1001 (1–3): 43–48. Bibcode:2011JMoSt1001...43F. doi:10.1016/j.molstruc.2011.06.014.
  19. ^ Frost, Ray L.; Palmer, Sara J. (September 2011). "Vibrational spectroscopic study of the mineral tsumebite Pb2Cu(PO4,SO4)(OH)". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79 (5): 1794–1797. Bibcode:2011AcSpA..79.1794F. doi:10.1016/j.saa.2011.05.058. PMID 21680232.
  20. ^ Frost, Ray L.; Palmer, Sara J. (April 2011). "A Raman and infrared spectroscopic study of the mineral delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O—A 'colloidal' mineral". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 78 (4): 1250–1254. Bibcode:2011AcSpA..78.1250F. doi:10.1016/j.saa.2010.12.039. PMID 21277823.
  21. ^ Galli, E.; Brigatti, M. F.; Malferrari, D.; Sauro, F.; De Waele, J. (2013-10-01). "Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10{middle dot}4H2O, a new hydrated aluminum phosphate-sulfate mineral from Chimanta massif, Venezuela: Description and crystal structure". American Mineralogist. 98 (10): 1906–1913. doi:10.2138/am.2013.4393. hdl:11585/185099. ISSN 0003-004X. S2CID 102265894.
  22. ^ Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (February 2012). "Raman spectroscopy of the multi-anion mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 87: 209–213. Bibcode:2012AcSpA..87..209F. doi:10.1016/j.saa.2011.11.040. PMID 22169025.
  23. ^ a b Palmer, Sara J.; Frost, Ray L. (May 2011). "The structure of the mineral arthurite (AsO4,PO4,SO4)2(O,OH)2·4H2O – A Raman spectroscopic study". Journal of Molecular Structure. 994 (1–3): 283–288. doi:10.1016/j.molstruc.2011.03.034.
  24. ^ Pekov, I. V.; Chukanov, N. V.; Kulikova, I. M.; Belakovsky, D. I. (December 2007). "Phosphoinnelite, Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3, a new mineral species from peralkaline pegmatite of the Kovdor pluton, Kola Peninsula". Geology of Ore Deposits. 49 (7): 530–536. Bibcode:2007GeoOD..49..530P. doi:10.1134/S1075701507070070. ISSN 1075-7015. S2CID 129616074.
  25. ^ Benmore, Richard A.; Coleman, Max L.; McArthur, John M. (April 1983). "Origin of sedimentary francolite from its sulphur and carbon isotope composition". Nature. 302 (5908): 516–518. Bibcode:1983Natur.302..516B. doi:10.1038/302516a0. ISSN 0028-0836. S2CID 4350036.
  26. ^ a b c Frost, Ray L.; Palmer, Sara J; Čejka, Jiří (September 2011). "The Application of Raman Spectroscopy to the Study of the Uranyl Mineral Coconinoite Fe 2 Al 2 (UO 2 ) 2 (PO 4 ) 4 (SO 4 )(OH) 2 · 20H 2 O". Spectroscopy Letters. 44 (6): 381–387. Bibcode:2011SpecL..44..381F. doi:10.1080/00387010.2010.551445. ISSN 0038-7010. S2CID 96609983.
  27. ^ "Xiangjiangite". www.mindat.org. Retrieved 2022-07-13.
  28. ^ BEKTUROV, AB; NA, DZHUMAGULOVA; ZK, KAIPOVA; RS, ERZHANOVA; VI, LITVINENKO (1980). "RECHERCHES DANS LE DOMAINE DES SULFATOPHOSPHATES. 5. TRANSFORMATIONS THERMIQUES DES MELANGES DE PHOSPHATE ET DE SULFATE D'AMMONIUM MONOSUBSTITUES ET D'HYDROSULFATE-DIHYDRO-PHOSPHATE D'AMMONIUM (NH4)2(HSO4.H2PO4)". Recherches dans le Domaine des Sulfatophosphates. 5. Transformations Thermiques des Melanges de Phosphate et de Sulfate d'Ammonium Monosubstitues et d'Hydrosulfate-Dihydro-Phosphate d'Ammonium (Nh4)2(Hso4.H2Po4).
  29. ^ PubChem. "Diammonium phosphate sulphate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-07-13.
  30. ^ Bouattour, S.; Mhiri, T.; Kolsi, A. W.; Romain, F. (October 1999). "Dielectric, dsc and raman studies of the phase transitions in NH 4 (HSO 4 ) 0.45 (H 2 PO 4 ) 0.55 mixed crystals". Phase Transitions. 70 (1): 19–28. Bibcode:1999PhaTr..70...19B. doi:10.1080/01411599908241337. ISSN 0141-1594.
  31. ^ a b c Braga, Dario; Modena, Enrico; Polito, Marco; Rubini, Katia; Grepioni, Fabrizia (2008). "Crystal forms of highly "dynamic" 18-crown[6] complexes with M[HSO4] and M[H2PO4] (M+ = NH4+, Rb+, Cs+): thermal behaviour and solid-state preparation". New Journal of Chemistry. 32 (10): 1718. doi:10.1039/b805203d. ISSN 1144-0546.
  32. ^ Fábry, Jan; Krupková, Radmila; Císařová, Ivana; Jurek, Karel (2003-03-15). "Bis(tetraethylammonium) hydrogensulfate dihydrogenphosphate at 292 and 150 K". Acta Crystallographica Section C: Crystal Structure Communications. 59 (3): o120–o123. doi:10.1107/S0108270103001471. ISSN 0108-2701. PMID 12711782.
  33. ^ a b c Stiewe, A.; Kemnitz, E. (2000). "Synthese und Kristallstruktur von K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) und Na(HSO4)(H3PO4)". Zeitschrift für Anorganische und Allgemeine Chemie. 626 (9): 2004–2011. doi:10.1002/1521-3749(200009)626:9<2004::AID-ZAAC2004>3.0.CO;2-0.
  34. ^ Zhang, Wenyao; Jin, Wenqi; Yang, Zhihua; Pan, Shilie (2020). "K 4 (PO 2 F 2 ) 2 (S 2 O 7 ): first fluorooxophosphorsulfate with mixed-anion [S 2 O 7 ] 2− and [PO 2 F 2 ] − groups". Dalton Transactions. 49 (48): 17658–17664. doi:10.1039/D0DT03307C. ISSN 1477-9226. PMID 33231582. S2CID 227157666.
  35. ^ von Lampe, F. (June 1969). "Darstellung eines kristallinen Sulfatophosphats, des Kalium-di-sulfato-monophosphats K3[O3SO?PO2?OSO3]". Zeitschrift für anorganische und allgemeine Chemie (in German). 367 (3–4): 170–188. doi:10.1002/zaac.19693670309. ISSN 0044-2313.
  36. ^ Mieritz, Daniel; Davidowski, Stephen K.; Seo, Dong-Kyun (October 2016). "Accessing alkali-free NASICON-type compounds through mixed oxoanion sol–gel chemistry: Hydrogen titanium phosphate sulfate, H1−Ti2(PO4)3−(SO4) (x=0.5–1)". Journal of Solid State Chemistry. 242: 116–125. Bibcode:2016JSSCh.242..116M. doi:10.1016/j.jssc.2016.02.007.
  37. ^ a b c d Kanunov, A. E.; Asabina, E. A.; Orlova, A. I. (January 2016). "Preparation and X-ray diffraction study of phosphate sulfates M2MgTi(SO4)(PO4)2". Russian Journal of General Chemistry. 86 (1): 18–25. doi:10.1134/S1070363216010047. ISSN 1070-3632. S2CID 102011872.
  38. ^ Apella, M. C.; Baran, E. J. (1981-05-01). "Zur Kristallstruktur der gemischten Phosphat/Sulfat-Fluorapatite / On the Crystal Structure of Mixed Phosphate/Sulfate Fluoroapatites". Zeitschrift für Naturforschung B. 36 (5): 644–645. doi:10.1515/znb-1981-0517. ISSN 1865-7117. S2CID 97118097.
  39. ^ Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias (2018-04-01). "Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2". Journal of Power Sources. 382: 144–151. Bibcode:2018JPS...382..144B. doi:10.1016/j.jpowsour.2018.02.021. ISSN 0378-7753. OSTI 1495971.
  40. ^ Essehli, Rachid; Alkhateeb, Alaa; Mahmoud, Abdelfattah; Boschini, Frèdéric; Ben Yahia, Hamdi; Amin, Ruhul; Belharouak, Ilias (September 2020). "Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2−xVx(PO4)(SO4)2". Journal of Power Sources. 469: 228417. Bibcode:2020JPS...46928417E. doi:10.1016/j.jpowsour.2020.228417. OSTI 1633153. S2CID 225331939.
  41. ^ Ling, Chun-Sheng; Yan, Lin (2008-11-15). "Tetrakis[tris(2,2′-bi-1 H -benzimidazole)nickel(II)] bis(phosphate) sulfate". Acta Crystallographica Section E: Structure Reports Online. 64 (11): m1399. doi:10.1107/S1600536808032571. ISSN 1600-5368. PMC 2959627. PMID 21580849.
  42. ^ a b Komornikov, V. A.; Grebenev, V. V.; Andreev, P. V.; Dmitricheva, E. V. (May 2015). "Study of phase equilibria in the Rb3H(SO4)2-RbH2PO4-H2O system". Crystallography Reports. 60 (3): 431–437. Bibcode:2015CryRp..60..431K. doi:10.1134/S1063774515030086. ISSN 1063-7745. S2CID 101238604.
  43. ^ a b c Stiewe, A.; Sonntag, R.; Troyanov, S.I.; Hansen, T.; Kemnitz, E. (January 2000). "Synthesis and Structure Determination of Rb2(HSO4)(H2PO4) and Rb4(HSO4)3(H2PO4) by X-Ray Single Crystal and Neutron Powder Diffraction". Journal of Solid State Chemistry. 149 (1): 9–15. Bibcode:2000JSSCh.149....9S. doi:10.1006/jssc.1999.8468.
  44. ^ a b c d e f g h i Pet’kov, V. I.; Dmitrienko, A. S.; Bokov, A. I. (July 2018). "Thermal expansion of phosphate–sulfates of eulytite structure". Journal of Thermal Analysis and Calorimetry. 133 (1): 199–205. doi:10.1007/s10973-017-6676-7. ISSN 1388-6150. S2CID 104200610.
  45. ^ a b c d e f g Savinykh, D. O.; Khainakov, S. A.; Orlova, A. I.; Garcia-Granda, S. (June 2018). "New Phosphate-Sulfates with NZP Structure". Russian Journal of Inorganic Chemistry. 63 (6): 714–724. doi:10.1134/S0036023618060207. hdl:10651/50903. ISSN 0036-0236. S2CID 105627248.
  46. ^ a b c Zhao, Xiao; Mei, Dajiang; Xu, Jingli; Wu, Yuandong (February 2016). "A Sb 2 (SO 4 ) 2 (PO 4 ) ( A = H 3 O + , K, Rb): Layered Structure Containing Ordered Sulfate and Phosphate Anions: A Sb 2 (SO 4 ) 2 (PO 4 ) ( A = H 3 O + , K, Rb". Zeitschrift für anorganische und allgemeine Chemie. 642 (4): 343–349. doi:10.1002/zaac.201500743.
  47. ^ Chisholm, C (2000-11-02). "Superprotonic behavior of Cs2(HSO4)(H2PO4) – a new solid acid in the CsHSO4–CsH2PO4 system". Solid State Ionics. 136–137 (1–2): 229–241. doi:10.1016/S0167-2738(00)00315-5.
  48. ^ Chisholm, Calum R. I.; Haile, Sossina M. (1999-12-01). "Structure and thermal behavior of the new superprotonic conductor Cs 2 (HSO 4 )(H 2 PO 4 )". Acta Crystallographica Section B: Structural Science. 55 (6): 937–946. doi:10.1107/S0108768199009921. ISSN 0108-7681. PMID 10927436.
  49. ^ Hayashi, Shigenobu; Jimura, Keiko (November 2017). "Incorporation of ammonium ions in Cs2(HSO4)(H2PO4) confirmed by solid-state NMR". Solid State Ionics. 311: 83–89. doi:10.1016/j.ssi.2017.09.015.
  50. ^ Makarova, I. P.; Grebenev, V. V.; Vasiliev, I. I.; Dmitricheva, E. V.; Komornikov, V. A.; Dolbinina, V. V. (July 2015). "Investigation of the structure of Cs3(HSO4)2(H2PO4) single crystals". Crystallography Reports. 60 (4): 498–507. Bibcode:2015CryRp..60..498M. doi:10.1134/S1063774515040148. ISSN 1063-7745. S2CID 93224453.
  51. ^ Makarova, I. P.; Grebenev, V. V.; Vasil’ev, I. I.; Dmitricheva, E. V.; Komornikov, V. A.; Dolbinina, V. V.; Mikheikin, A. S. (January 2016). "Structure of Cs4(HSO4)3(H2PO4) single crystals". Crystallography Reports. 61 (1): 18–23. Bibcode:2016CryRp..61...18M. doi:10.1134/S1063774516010119. ISSN 1063-7745. S2CID 101823664.
  52. ^ Makarova, Irina; Grebenev, Vadim; Dmitricheva, Elena; Vasiliev, Ilya; Komornikov, Vladimir; Dolbinina, Valentina; Mikheykin, Alexey (2016-02-01). "M m H n ( X O 4 ) ( m + n )/2 crystals: structure, phase transitions, hydrogen bonds, conductivity. II. Structure and properties of Cs 3 (HSO 4 ) 2 (H 2 PO 4 ) and Cs 4 (HSO 4 ) 3 (H 2 PO 4 ) single crystals". Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 72 (1): 133–141. doi:10.1107/S2052520615023069. ISSN 2052-5206. PMID 26830805.
  53. ^ Grebenev, V. V.; Makarova, I. P.; Ksenofontov, D. A.; Komornikov, V. A.; Dmitricheva, E. V. (November 2013). "Phase transitions in Cs5(HSO4)2(H2PO4)3 crystal". Crystallography Reports. 58 (6): 894–898. Bibcode:2013CryRp..58..894G. doi:10.1134/S1063774513060138. ISSN 1063-7745. S2CID 94005540.
  54. ^ Makarova, I. P.; Grebenev, V. V.; Komornikov, V. A.; Selezneva, E. V. (November 2016). "New crystals of the CsHSO4–CsH2PO4–H2O system". Crystallography Reports. 61 (6): 918–922. Bibcode:2016CryRp..61..918M. doi:10.1134/S1063774516060079. ISSN 1063-7745. S2CID 99983650.
  55. ^ Haile, Sossina M.; Calkins, Pamela M. (November 1998). "X-Ray Diffraction Study of Cs5(HSO4)3(H2PO4)2, a New Solid Acid with a Unique Hydrogen-Bond Network". Journal of Solid State Chemistry. 140 (2): 251–265. Bibcode:1998JSSCh.140..251H. doi:10.1006/jssc.1998.7884.
  56. ^ a b Komornikov, V. A.; Timakov, I. S.; Zajnullin, O. B.; Grebenev, V. V.; Makarova, I. P.; Selezneva, E. V.; Ksenofontov, D. A. (November 2019). "New Crystals in the CsHSO4–CsH2PO4–NH4H2PO4–H2O System". Crystallography Reports. 64 (6): 984–990. Bibcode:2019CryRp..64..984K. doi:10.1134/S1063774519060105. ISSN 1063-7745. S2CID 209509678.
  57. ^ König, K.-H.; Eckstein, G. (December 1972). "Amorphe und kristalline cer(IV)-phosphate als ionenaustauscher—IV Makrosorption, tracersorption und nuklidtrennungen an kristallinen cer(IV)-phosphatsulfaten". Journal of Inorganic and Nuclear Chemistry (in German). 34 (12): 3771–3779. doi:10.1016/0022-1902(72)80024-1.
  58. ^ König, K.-H.; Eckstein, G. (April 1973). "Kationenaustausch an kristallinen Cer(III)-phosphatsulfaten". Journal of Inorganic and Nuclear Chemistry (in German). 35 (4): 1359–1367. doi:10.1016/0022-1902(73)80210-6.
  59. ^ Wang, Dan; Yu, Ranbo; Xu, Yaohua; Feng, Shouhua; Xu, Ruren; Kumada, Nobuhiro; Kinomura, Nobukazu; Matsumura, Yasuyuki; Takano, Mikio (November 2002). "The First Organically Templated Layered Cerium Phosphate-Hydrogen Sulfate: [enH 2 ] 0.5 [Ce III (PO 4 )(HSO 4 )(OH 2 )]". Chemistry Letters. 31 (11): 1120–1121. doi:10.1246/cl.2002.1120. ISSN 0366-7022.
  60. ^ Kumada, Nobuhiro; Kumon, Junichi; Miyagawa, Kazuya; Yonesaki, Yoshinori; Takei, Takahiro; Kinomura, Nobukazu; Wang, Dan; Yu, Ranbo (2010). "Preparation and crystal structure of [enH2]0.5[Ho(HPO4)(SO4)(H2O)] (en; ethylenediamine)". Journal of the Ceramic Society of Japan. 118 (1375): 236–240. doi:10.2109/jcersj2.118.236. ISSN 1348-6535. S2CID 98263946.
  61. ^ a b c d e f g h i Durif, A. (1957). C. R. Hebd. Séances Acad. Sci. 245: 1151–1152. {{cite journal}}: Missing or empty |title= (help)
  62. ^ Brandel, Vladimir; Dacheux, Nicolas; Rousselle, Jérôme; Genet, Michel (August 2002). "Synthesis of some new thorium phosphates". Comptes Rendus Chimie. 5 (8–9): 599–606. doi:10.1016/S1631-0748(02)01419-4.
  63. ^ PubChem. "Adenosine-5'-phosphosulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-07-14.