From WikiProjectMed
Jump to navigation Jump to search
Other names: Hypermetropia, hyperopia, longsightedness, long-sightedness[1]
Far-sightedness without (top) and with lens correction (bottom)
SpecialtyOphthalmology, optometry
SymptomsClose objects appear blurry[2]
ComplicationsAccommodative dysfunction, binocular dysfunction, amblyopia, strabismus[3]
CausesToo short an eyeball, misshapen lens or cornea[2]
Risk factorsFamily history[2]
Diagnostic methodEye exam[2]
Differential diagnosisAmblyopia, retrobulbar optic neuropathy, retinitis pigmentosa sine pigmento[4]
TreatmentEyeglasses, contact lenses, surgery[2]
Frequency~7.5% (US)[2]

bew:Suai Far-sightedness, also known as hypermetropia, is a condition of the eye in which light is focused behind, instead of on, the retina.[2] This results in close objects appearing blurry, while far objects may appear normal.[2] As the condition worsens, objects at all distances may be blurry.[2] Other symptoms may include headaches and eye strain.[2] People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus.[3]

The cause is an imperfection of the eyes.[2] Often it occurs when the eyeball is too short, or the lens or cornea is misshapen.[2] Risk factors include a family history of the condition, diabetes, certain medications, and tumors around the eye.[2][4] It is a type of refractive error.[2] Diagnosis is based on an eye exam.[2]

Management can occur with eyeglasses, contact lenses, or surgery.[2] Glasses are easiest while contact lenses can provide a wider field of vision.[2] Surgery works by changing the shape of the cornea.[2] Far-sightedness primarily affects young children, with rates of 8% at 6 years and 1% at 15 years.[5] It then becomes more common again after the age of 40, affecting about half of people.[4]

Signs and symptoms

Far-sighted vision on left, normal vision on right

The signs and symptoms of far-sightedness are blurry vision, headaches, and eye strain.[2] The common symptom is eye strain. Difficulty seeing with both eyes (binocular vision) may occur, as well as difficulty with depth perception.[1]


Simple hypermetropia, the commonest form of hypermetropia is caused by normal biological variations in the development of eyeball.[6] Aetiologically, causes of hypermetropia can be classified as:

  • Axial: Axial hypermetropia occur when the axial length of eyeball is too short. About 1 mm decrease in axial length cause 3 diopters of hypermetropia.[6] One condition that cause axial hypermetropia is nanophthalmos.[7]
  • Curvatural: Curvatural hypermetropia occur when curvature of lens or cornea is flatter than normal. About 1 mm increase in radius of curvature results in 6 diopters of hypermetropia.[6] Cornea is flatter in microcornea and cornea plana.[7]
  • Index: Age related changes in refractive index (cortical sclerosis) can cause hypermetropia. Another cause of index hypermetropia is diabetis.[6] Occasionally, mild hypermetropic shift may be seen in association with cortical or subcapsular cataract also.[7]
  • Positional: Positional hypermetropia occur due to posterior dislocation of Lens or IOL.[6]
  • Consecutive: Consecutive hypermetropia occur due to surgical over correction of myopia or surgical under correction in cataract surgery.[6]
  • Functional: Functional hypermetropia results from paralysis of accommodation as seen in internal ophthalmoplegia, CN III palsy etc.[6]
  • Absence of lens: Congenital or acquired aphakia cause high degree hypermetropia.[8]

Far-sightedness is often present from birth, but children have a very flexible eye lens, which helps to compensate.[9] In rare instances hyperopia can be due to diabetes, and problems with the blood vessels in the retina.[1]


Human eye cross-section

A diagnosis of far-sightedness is made by utilizing either a retinoscope or an automated refractor-objective refraction; or trial lenses in a trial frame or a phoropter to obtain a subjective examination. Ancillary tests for abnormal structures and physiology can be made via a slit lamp test, which examines the cornea, conjunctiva, anterior chamber, and iris.[10][11]

In severe cases of hyperopia from birth, in regards to preterm infants seem to have a higher incidence.[12] A child with severe hyperopia can't see objects in detail. If the brain never learns to see objects in detail, then there is a high chance of one eye becoming dominant. The result is that the brain will block the impulses of the non-dominant eye. [13]


Choroid folds in high hyperopia (fluorescein angiography)

Hyperopia is typically classified according to several aspects, there are three clinical categories of hyperopia.[3]

  • Simple hyperopia: Occurs naturally due to biological diversity.
  • Pathological hyperopia: Caused by disease, trauma, or abnormal development.
  • Functional hyperopia: Caused by paralysis that interferes eye's ability to accommodate.

Classification according to severity

There are also three categories severity:[3]

  • Low: Refractive error less than or equal to +2.00 diopters (D).
  • Moderate: Refractive error greater than +2.00 D up to +5.00 D.
  • High: Refractive error greater than +5.00 D.

Accomodation has significant role in hyperopia. Considering accommodative status, hyperopia can be classified as:[14][6]

  • Total hypermetropia: It is the total amount of hyperopia which is obtained after complete relaxation of accommodation using cycloplegics like atropine.
  • Latent hyperopia: It is the amount of hyperopia normally corrected by ciliary tone (approximately 1 diopter).
  • Manifest hyperopia: It is the amount of hyperopia not corrected by ciliary tone. Manifest hyperopia is further classified into two, facultative and absolute.
    • Facultative hyperopia: It is the part of hyperopia corrected by patient's accommodation.
    • Absolute hyperopia: It is the residual part of hyperopia which causes blurring of vision for distance.

So, Total hyperopia= latent hyperopia + manifest hyperopia (facultative + absolute)[14]


Corrective lenses

The simplest form of treatment for far-sightedness is the use of corrective lenses, eyeglasses or contact lenses.[15][16] Eyeglasses used to correct far-sightedness have convex lenses.[17]


Laser procedures

  • Photorefractive keratectomy (PRK): This is a refractive technique that is done by removal of a minimal amount of the corneal surface.[17][18] Hyperopic PRK has many complications like regression effect, astigmatism due to epithelial healing, and corneal haze.[19] Post operative epithelial healing time is also more for PRK.[20]
  • Laser assisted in situ keratomileusis (LASIK): Laser eye surgery to reshape the cornea, so that glasses or contact lenses are no longer needed.[18][21] Excimer laser LASIK can correct hypermetropia upto +6 diopters.[19] LASIK is contraindicated in patients with lupus and rheumatoid arthritis.[19]
  • Laser epithelial keratomileusis (LASEK): Resembles PRK, but uses alcohol to loosen the corneal surface.[17]
  • Epi-LASIK: Epi-LASIK is also used to correct hyperopia.[20] In this procedure, use of epikeratome eliminates the use of alcohol.[20]
  • Laser thermal keratoplasty (LTK): Laser thermal keratoplasty is a laser based non-destructive refractive procedure used to correct hyperopia and presbyopia.[20] It uses Thallium-Holmium-Chromium (THC): YAG laser.[20]

IOL implantation

  • Ahakia correction: High degree hypermetropia due to absence of lens (aphakia) is best corrected using intraocular lens implantation.[22]
  • Refractive lens exchange (RLE): A variation of cataract surgery where the natural crystalline lens is replaced with an artificial intraocular lens; the difference is the existence of abnormal ocular anatomy which causes a high refractive error.[23]
  • Phakic IOL: Phakic intraocular lens are lenses that implanted inside eye without removing the normal crystalline lens. Phakic IOLs can be used to correct hypermetropia upto +20 diopters.[20]

Non laser procedures

  • Conductive keratoplasty (CK): Conductive keratoplasty is a non laser refractive procedure used to correct presbyopia and low hypermetropia (+0.75D to +3.25D) with or without astigmatism (upto 0.75D).[20][24] It uses radiofrequency energy to heat and shrink corneal collagen tissue. CK is contraindicated in pregnant/breastfeeding women, central corneal dystrophies and scarring, history of herpetic keratitis, type 1 diabetes etc.[24]
  • Automated lamellar keratoplasty (ALK): Hyperopic automated lamellar keratoplasty (H-ALK) and Homoplastic ALK are ALK procedures that corrects low to moderate hyperopia.[25] Poor predictability and the risk of complications limits usefulness of these procedures.[25]
  • Keratophakia and epi-keratophakia are another two non laser surgical procedures used to correct hypermetropia.[25] Keratophakia is a surgical technique developed by Barraquer for treating high hypermetropia and aphakia. Poor predictability and induced irregular astigmatism are complications of these procedures.[25]


The term hyperopia comes from Greek ὑπέρ hyper "over" and ὤψ ōps "sight" (GEN ὠπός ōpos).[26]


  1. 1.0 1.1 1.2 Lowth, Mary. "Long Sight (Hypermetropia)". Patient. Patient Platform Limited. Archived from the original on 2016-03-03. Retrieved 2016-02-26.
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 "Facts About Hyperopia". NEI. July 2016. Archived from the original on 8 July 2017. Retrieved 11 July 2017.
  3. 3.0 3.1 3.2 3.3 Moore, Bruce D.; Augsburger, Arol R.; Ciner, Elise B.; Cockrell, David A.; Fern, Karen D.; Harb, Elise (2008). "Optometric Clinical Practice Guideline: Care of the Patient with Hyperopia" (PDF). American Optometric Association. pp. 2–3, 10–11. Archived from the original (PDF) on 2006-07-17. Retrieved 2006-06-18.
  4. 4.0 4.1 4.2 Kaiser, Peter K.; Friedman, Neil J.; II, Roberto Pineda (2014). The Massachusetts Eye and Ear Infirmary Illustrated Manual of Ophthalmology E-Book. Elsevier Health Sciences. p. 541. ISBN 9780323225274. Archived from the original on 2017-09-08.
  5. Castagno, VD; Fassa, AG; Carret, ML; Vilela, MA; Meucci, RD (23 December 2014). "Hyperopia: a meta-analysis of prevalence and a review of associated factors among school-aged children". BMC Ophthalmology. 14: 163. doi:10.1186/1471-2415-14-163. PMC 4391667. PMID 25539893.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Khurana, AK (September 2008). "Errors of refraction and binocular optical defects". Theory and practice of optics and refraction (2nd ed.). Elsevier. pp. 62–66. ISBN 978-81-312-1132-8.
  7. 7.0 7.1 7.2 John F., Salmon (2020). Kanski's clinical ophthalmology: a systematic approach (9th ed.). Edinburgh: Elsevier. ISBN 978-0-7020-7713-5. OCLC 1131846767.
  8. Khurana, AK (2015). "Errors of refraction and accommodation". Comprehensive ophthalmology (6th ed.). Jaypee, The Health Sciences Publisher. pp. 37–38. ISBN 978-93-86056-59-7.
  9. "Normal, near-sightedness, and far-sightedness". MedlinePlus Medical Encyclopedia. Archived from the original on 2016-03-05. Retrieved 2016-02-26.
  10. "Farsightedness". MedlinePlus Medical Encyclopedia. Archived from the original on 2016-02-24. Retrieved 2016-02-26.
  11. "Slit-lamp exam". MedlinePlus Medical Encyclopedia. Archived from the original on 2016-03-05. Retrieved 2016-02-26.
  12. Brodsky, Dara; Ouellette, Mary Ann (2008). Primary care of the premature infant. Philadelphia, PA: Saunders. p. 230. ISBN 978-1-4160-0039-6. Archived from the original on 2021-08-28. Retrieved 2020-10-31.
  13. "Amblyopia (Lazy Eye) | National Eye Institute". www.nei.nih.gov. Archived from the original on 31 January 2020. Retrieved 25 September 2020.
  14. 14.0 14.1 Pablo, Artal (2017). Handbook of visual optics-Fundamentals and eye optics and. CRC Press. ISBN 978-1-4822-3785-6.
  15. Chou, Roger; Dana, Tracy; Bougatsos, Christina (2011-02-01). "Introduction". Screening for Visual Impairment in Children Ages 1-5 Years: Systematic Review to Update the 2004 U.S. Preventive Services Task Force Recommendation (Report). Evidence Syntheses. Vol. 81. Rockville, MD: Agency for Healthcare Research and Quality. Archived from the original on 2017-09-08 – via PubMed Health.
  16. "Farsightedness (Hyperopia): Treatments". PubMed Health. U. S. National Library of Medicine. Archived from the original on 2017-09-08. Retrieved 2016-02-26.
  17. 17.0 17.1 17.2 "Treating long-sightedness". NHS Choices. National Health Service. Archived from the original on 2016-03-05. Retrieved 2016-02-26.
  18. 18.0 18.1 Settas, George; Settas, Clare; Minos, Evangelos; Yeung, Ian Yl (2012-01-01). "Photorefractive keratectomy (PRK) versus laser assisted in situ keratomileusis (LASIK) for hyperopia correction". Cochrane Database of Systematic Reviews. 6 (6): CD007112. doi:10.1002/14651858.CD007112.pub3. ISSN 1469-493X. PMID 22696365.
  19. 19.0 19.1 19.2 Arun C, Gulani (9 November 2019). "LASIK Hyperopia: Background, History of the Procedure, Problem". Archived from the original on 29 July 2020. Retrieved 29 July 2020. {{cite journal}}: Cite journal requires |journal= (help)
  20. 20.0 20.1 20.2 20.3 20.4 20.5 20.6 Khurana, AK. "Refractive surgery". Theory and practice of optics and refraction (2nd ed.). Elsevier. pp. 307–348. ISBN 978-81-312-1132-8.
  21. "Laser Eye Surgery". MedlinePlus. Archived from the original on 2016-03-06. Retrieved 2016-02-26.
  22. Nema, H. V.; Nema, Nitin. Textbook of Ophthalmology. JP Medical Ltd. p. 287. ISBN 978-93-5025-507-0. Archived from the original on 28 August 2021. Retrieved 24 September 2020.
  23. Alió, Jorge L.; Grzybowski, Andrzej; Romaniuk, Dorota (2014-12-10). "Refractive lens exchange in modern practice: when and when not to do it?". Eye and Vision. 1: 10. doi:10.1186/s40662-014-0010-2. ISSN 2326-0254. PMC 4655463. PMID 26605356. open access
  24. 24.0 24.1 "Conductive Keratoplasty". eyewiki.aao.org. Archived from the original on 2020-08-12. Retrieved 2020-07-29.
  25. 25.0 25.1 25.2 25.3 Refractive surgery. Azar, Dimitri T. (2nd ed.). Philadelphia: Mosby / Elsevier. 2007. ISBN 0-323-03599-X. OCLC 853286620.{{cite book}}: CS1 maint: others (link)
  26. "hyperopia". Online Etymology Dictionary. Douglas Harper. Archived from the original on 2017-09-08.

External links

External resources